留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

导电金属有机框架在热电材料领域的研究进展

吴鑫 张帆 郑琦 王连军

吴鑫, 张帆, 郑琦, 王连军. 导电金属有机框架在热电材料领域的研究进展[J]. 上海工程技术大学学报, 2021, 35(1): 1-8.
引用本文: 吴鑫, 张帆, 郑琦, 王连军. 导电金属有机框架在热电材料领域的研究进展[J]. 上海工程技术大学学报, 2021, 35(1): 1-8.
WU Xin, ZHANG Fan, ZHENG Qi, WANG Lianjun. Research Progress of Conductive Metal-Organic Frameworks in Thermoelectric Materials[J]. Journal of Shanghai University of Engineering Science, 2021, 35(1): 1-8.
Citation: WU Xin, ZHANG Fan, ZHENG Qi, WANG Lianjun. Research Progress of Conductive Metal-Organic Frameworks in Thermoelectric Materials[J]. Journal of Shanghai University of Engineering Science, 2021, 35(1): 1-8.

导电金属有机框架在热电材料领域的研究进展

详细信息
    作者简介:

    吴鑫:吴 鑫(1995−),女,在读博士,研究方向为热电材料. E-mail:2180281@mail.dhu.edu.cn

    通讯作者:

    郑 琦(1986−),女,副教授,博士,研究方向为晶态功能材料. E-mail:qi.zheng@dhu.edu.cn

  • 中图分类号: TG 456

Research Progress of Conductive Metal-Organic Frameworks in Thermoelectric Materials

  • 摘要: 金属有机框架(MOFs)是一种高度有序的晶体多孔固体材料,通过一系列实验设计策略,可构建高电导率的MOFs,其是极具潜力的热电材料. 从导电MOFs的结构、导电机制及其热电应用几个方面阐述导电MOFs在热电材料领域的研究进展,同时总结其在热电材料领域面临的挑战和发展方向,为新型MOFs基热电材料的开发提供参考.
  • 图  1  Cu3(HHTP)2薄膜的电化学沉积和热电性能表征[9]

    Figure  1.  Electrochemical deposition and thermoelectric characterization of Cu3(HHTP)2 thin film

    图  2  Zn-HAB结构及性能[11]

    Figure  2.  Structure and property of Zn-HAB

    图  3  TCNQ@Cu3(BTC)2薄膜热电性能[10]

    Figure  3.  Thermoelectric characterization of TCNQ@Cu3(BTC)2 thin films

    图  4  Zr-MOF/PAn合成示意图[27]

    Figure  4.  Schematic diagram of Zr-MOF/PAn Composites

    表  1  导电MOFs基热电材料及性能汇总

    Table  1.   A summary of properties of conductive MOF based thermoelectric materials

    导电MOFs样品类型导电机制热导率 / (W ·(m·K)−1)电导率 / (S ·cm−1)塞贝克系数 / (μV ·K−1)功率因子 / (μW·m−1·K−1)
    Ni3(HITP)2[25] 压片 扩展共轭 0.21 58.8 −11.9 0.831
    Cu3(HHTP)2[9] 压片 扩展共轭 3.80×10−3 −7.24 2×10−5
    Cu3(HHTP)2[9] 薄膜 扩展共轭 2.28×10−3 −121.4 3.15×10−3
    Cu3(BHT)[26] 薄膜 扩展共轭 0.24 2 000 −21 88.2
    Ni-PTC[18] 压片 扩展共轭 0.20 9.0 47 2.0
    Zn-HAB[11] 压片 扩展共轭 8.6×10−4 200 3.44×10−3
    TCNQ@Cu3(BTC)2[10] 薄膜 客体促进 0.27 4×10−3 375 0.057
    Zr-MOF/PAn/PSS[27] 薄膜 客体促进 0.24 0.021 −17780 664
    ZIF-67@CNT[28] 薄膜 客体促进 4.10±0.60 825.7±12.0 55.6±0.9 255.6±11.8
    下载: 导出CSV
  • [1] TRITT T M, SUBRAMANIAN M A. Thermoelectric materials, phenomena, and applications: A bird’s eye view[J] . MRS Bulletin,2006,31(3):188 − 198. doi: 10.1557/mrs2006.44
    [2] POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J] . Science,2008,320(5876):634 − 638. doi: 10.1126/science.1156446
    [3] SNYDER G J, TOBERER E S. Complex thermoelectric materials[J] . Nature Materials,2008,7(2):105 − 114. doi: 10.1038/nmat2090
    [4] SINGH S, LEE S, KANG H, et al. Thermoelectric power waves from stored chemical energy[J] . Energy Storage Materials,2016,3:55 − 65. doi: 10.1016/j.ensm.2016.01.004
    [5] ROWSELL J L C, YAGHI O M. Metal-organic frameworks: A new class of porous materials[J] . Microporous and Mesoporous Material,2004,73(1/2):3 − 14. doi: 10.1016/j.micromeso.2004.03.034
    [6] MURRAY LJ, DINCĂ M, LONG J R. Hydrogen storage in metal- organic frameworks[J] . Chemical Society Review,2009,38(5):1294 − 1314. doi: 10.1039/b802256a
    [7] LI P L, SHEN Y L, WANG D D, et al. Selective adsorption-based separation of flue gas and natural gas in zirconium metal-organic frameworks nanocrystals[J] . Molecules,2019,24(9):1822. doi: 10.3390/molecules24091822
    [8] LEE J, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts[J] . Chemical Society Reviews,2009,38(5):1450 − 1459. doi: 10.1039/b807080f
    [9] De LOURDES GONZALEZ-JUAREZ M, FLORES E, MARTIN-GONZALEZ M, et al. Electrochemical deposition and thermoelectric characterisation of a semiconducting 2-D metal–organic framework thin film[J] . Journal of Materials Chemistry A,2020,8(26):13197 − 13206. doi: 10.1039/D0TA04939E
    [10] ERICKSON K J, LEONARD F, STAVILA V, et al. Thin film thermoelectric metal-organic framework with high seebeck coefficient and low thermal conductivity[J] . Advanced Materials,2015,27(22):3453 − 3459. doi: 10.1002/adma.201501078
    [11] PARK J, HINCKLEY A C, HUANG Z H, et al. High thermopower in a zn-based 3d semiconductive metal–organic framework[J] . Journal of the American Chemical Society,2020,142(49):20531 − 20535. doi: 10.1021/jacs.0c09573
    [12] LEE H, VASHAEE D, WANG D Z, et al. Effects of nanoscale porosity on thermoelectric properties of SiGe[J] . Journal of Applied Physics,2010,107(9):094308 − 094314. doi: 10.1063/1.3388076
    [13] SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal–organic frameworks[J] . Angewandte Chemie International Edition,2016,55(11):3566 − 3579. doi: 10.1002/anie.201506219
    [14] MINNICH A J, DRESSELHAUS M S, REN Z F, et al. Bulk nanostructured thermoelectric materials: current research and future prospects[J] . Energy & Environmental Science,2009,2(5):466 − 479.
    [15] TAKAISHI S, HOSODA M, KAJIWARA T, et al. Electroconductive porous coordination polymer cu[cu(pdt)2] composed of donor and acceptor building units[J] . Inorganic Chemistry,2009,48(19):9048 − 9050. doi: 10.1021/ic802117q
    [16] XIE LS, SKORUPSKII G, DINCĂ M. Electrically conductive metal-organic frameworks[J] . Chemical Reviews,2020,120(16):8536 − 8580. doi: 10.1021/acs.chemrev.9b00766
    [17] LI W H, DENG W H, WANG G E, et al. Conductive MOFs[J] . EnergyChem,2020,2(2):100029. doi: 10.1016/j.enchem.2020.100029
    [18] CHEN Z J, CUI Y T, JIN Y G, et al. Nanorods of a novel highly conductive 2D metal–organic framework based on perthiolated coronene for thermoelectric conversion[J] . Journal of Materials Chemistry C,2020,8(24):8199 − 8205. doi: 10.1039/D0TC01778G
    [19] TALIN A A, CENTRONE A, FORD A C, et al. Tunable electrical conductivity in metal-organic framework thin-film devices[J] . Science,2014,343(6166):66 − 69. doi: 10.1126/science.1246738
    [20] SUN L, MIYAKAI T, SEKI S, et al. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): A microporous metal-organic framework with infinite (−Mn–S−)chains and high intrinsic charge mobility[J] . Journal of the American Chemical Society,2013,135(22):8185 − 8188. doi: 10.1021/ja4037516
    [21] SUN L, HENDON C H, MINIER M A, et al. Million-fold electrical conductivity enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E=S, O)[J] . Journal of the American Chemical Society,2015,137(19):6164 − 6167. doi: 10.1021/jacs.5b02897
    [22] XIE L S, ALEXANDROV E V, SKORUPSKII G, et al. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks[J] . Chemical Science,2019,10(37):8558 − 8565. doi: 10.1039/C9SC03348C
    [23] KUANG X F, CHEN S C, MENG L Y, et al. Supramolecular aggregation of a redox-active copper-naphthalenediimide network with intrinsic electron conduction[J] . Chemical Communications,2019,55(11):1643 − 1646. doi: 10.1039/C8CC10269D
    [24] BRYCE M R. Recent progress on conducting organic charge-transfer salts[J] . Chemical Society Reviews,1991,20(3):355 − 390. doi: 10.1039/cs9912000355
    [25] SHEBERLA D, SUN L, BLOOD-FORSYTHE M A, et al. High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a semiconducting metal-organic graphene analogue[J] . Journal of the American Chemical Society,2014,136(25):8859 − 8862. doi: 10.1021/ja502765n
    [26] TSUCHIKAWA R, LOTFIZADEH N, LAHIRI N, et al. Unique thermoelectric properties induced by intrinsic nanostructuring in a polycrystalline thin-film two-dimensional metal-organic framework, copper benzenehexathiol[J] . Physica Status Solidi A,2020,217(23):2070064. doi: 10.1002/pssa.202070064
    [27] LIN C C, HUANG Y C, USMAN M, et al. Zr-MOF/polyaniline composite films with exceptional Seebeck coefficient for thermoelectric material applications[J] . ACS Applied Materials & Interfaces,2019,11(3):3400 − 3406.
    [28] XUE Y F, ZHANG Z B, ZHANG Y C, et al. Boosting thermoelectric performance by in situ growth of metal organic framework on carbon nanotube and subsequent annealing[J] . Carbon,2020,157:324 − 329. doi: 10.1016/j.carbon.2019.10.049
    [29] HEREBIAN D, BOTHE E, NEESE F, et al. Molecular and electronic structures of bis-(o-diiminobenzosemiquinonato)metal(II) complexes (Ni, Pd, Pt), their monocations and −anions, and of dimeric dications containing weak metal−metal bonds[J] . Journal of the American Chemical Society,2003,125(30):9116 − 9128. doi: 10.1021/ja030123u
    [30] SUN L, LIAO B, SHEBERLA D, et al. A microporous and naturally nanostructured thermoelectric metal-organic framework with ultralow thermal conductivity[J] . Joule,2017,1(1):168 − 177. doi: 10.1016/j.joule.2017.07.018
    [31] HMADEH M, LU Z, LIU Z, et al. New porous crystals of extended metal-catecholates[J] . Chemistry of Materials,2012,24(18):3511 − 3513. doi: 10.1021/cm301194a
    [32] CAMPBELL M G, LIU S F, SWAGER T M, et al. Chemiresistive sensor arrays from conductive 2D metal–organic frameworks[J] . Journal of the American Chemical Society,2015,137(43):13780 − 13783. doi: 10.1021/jacs.5b09600
    [33] MÄHRINGER A, JAKOWETZ A C, ROTTER J M, et al. Oriented thin films of electroactive triphenylene catecholate-based two-dimensional metal–organic frameworks[J] . ACS Nano,2019,13(6):6711 − 6719. doi: 10.1021/acsnano.9b01137
    [34] YAO M S, LV X J, FU Z H, et al. Layer-by-layer assembled conductive metal–organic framework nanofilms for room-temperature chemiresistive sensing[J] . Angewandte Chemie International Edition,2017,56(52):16510 − 16514. doi: 10.1002/anie.201709558
    [35] SMITH M K, JENSEN K E, PIVAK P A, et al. Direct self-assembly of conductive nanorods of metal–organic frameworks into chemiresistive devices on shrinkable polymer films[J] . Chemistry of Materials,2016,28(15):5264 − 5268. doi: 10.1021/acs.chemmater.6b02528
    [36] LI W H, DING K, TIAN H R, et al. Conductive metal-organic framework nanowire array electrodes for high-performance solid-state supercapacitors[J] . Advanced Functional Materials,2017,27(27):1702067. doi: 10.1002/adfm.201702067
    [37] KAMBE T, SAKAMOTO R, HOSHIKO K, et al. π-conjugated nickel bis(dithiolene) complex nanosheet[J] . Journal of the American Chemical Society,2013,135(7):2462 − 2465. doi: 10.1021/ja312380b
    [38] KATO R. Conducting metal dithiolene complexes: Structural and electronic properties[J] . Chemical Reviews,2004,104(11):5319 − 5346. doi: 10.1021/cr030655t
    [39] HUANG X, SHENG P, TU Z, et al. A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour[J] . Nature Communications,2015,6:7408. doi: 10.1038/ncomms8408
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  211
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-13
  • 刊出日期:  2021-03-30

目录

    /

    返回文章
    返回