留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆柱电池模组的热电制冷与温控性能分析

魏鹏 裔昭臧 张恒运 孙海涛 曾淑贞 陈运

魏鹏, 裔昭臧, 张恒运, 孙海涛, 曾淑贞, 陈运. 圆柱电池模组的热电制冷与温控性能分析[J]. 上海工程技术大学学报, 2023, 37(2): 207-214. doi: 10.12299/jsues.22-0037
引用本文: 魏鹏, 裔昭臧, 张恒运, 孙海涛, 曾淑贞, 陈运. 圆柱电池模组的热电制冷与温控性能分析[J]. 上海工程技术大学学报, 2023, 37(2): 207-214. doi: 10.12299/jsues.22-0037
WEI Peng, YI Zhaozang, ZHANG Hengyun, SUN Haitao, ZENG Shuzhen, CHEN Yun. Research on refrigeration cooling and temperature control of thermoelectric devices for cylindrical battery module[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 207-214. doi: 10.12299/jsues.22-0037
Citation: WEI Peng, YI Zhaozang, ZHANG Hengyun, SUN Haitao, ZENG Shuzhen, CHEN Yun. Research on refrigeration cooling and temperature control of thermoelectric devices for cylindrical battery module[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 207-214. doi: 10.12299/jsues.22-0037

圆柱电池模组的热电制冷与温控性能分析

doi: 10.12299/jsues.22-0037
基金项目: 国家自然科学基金项目资助(51876113);上海市自然科学基金项目资助(21ZR1426300);上海市大学生创新训练项目资助(cs2101003)
详细信息
    作者简介:

    魏鹏:魏 鹏(2000−),男,在读本科生,研究方向为动力电池热管理. E-mail:1907439929@qq.com

    通讯作者:

    张恒运(1972−),男,教授,博士,研究方向为动力电池热管理. E-mail:zhanghengyun@sues.edu.cn

  • 中图分类号: TK511

Research on refrigeration cooling and temperature control of thermoelectric devices for cylindrical battery module

  • 摘要: 基于帕尔贴效应提出一种通过热电装置(Thermoelectric Device,TED)实时控制电池温度的方法. 该方法集TED的制冷与加热功能于一体,控温效果良好,可以满足电池模组热管理需求. 电池模组由3×5排列的圆柱电池组成,填充泡沫金属复合相变材料,热电装置布置在电池模组外壳正对大面处. 与液冷试验相比,热电制冷可以在1~5 W单电池产热功率下显著降低电池模组的温度,将模组温差控制在5 ℃内. 温控试验进一步表明,采用温控器实时控制的TED可以有效稳定模组温度,将温度波动控制在2~3 ℃. 此外,建立一维热阻网络,基于稳态理论对TED热性能分析. 结果表明,在制冷工况下,TED的冷端温度随其电流的增大呈先减后增的趋势,热端温度与TED电流成正比.
  • 图  1  试验系统原理图和热电偶位置

    Figure  1.  Schematic diagram of experimental system and thermocouple position

    图  2  试验装置图

    Figure  2.  Experimental device diagram

    图  3  TED和温控器

    Figure  3.  TED and temperature controller

    图  4  基于TED的电池模组一维热阻网络

    Figure  4.  One-dimensional thermal resistance network of battery module based on TED

    图  5  液冷条件下电池模组最高温度和最大温差

    Figure  5.  The maximum temperature and the maximum temperature difference of battery module under liquid cooling condition

    图  6  热电制冷模组的最高温度和最大温差

    Figure  6.  The maximum temperature and the maximum temperature difference of thermoelectric refrigeration module

    图  7  电池最高温度和最大温差

    Figure  7.  The maximum temperature and the maximum temperature difference of batteries

    图  8  制冷模式下电池温度随TED工作电流的演变

    Figure  8.  Battery temperature evolution with TED working currents in cooling mode

    图  9  不同电池温度下TED冷端和热端温度变化

    Figure  9.  Temperature changes of TED cold side and hot side under different battery temperatures

    表  1  热电片1-12718参数

    Table  1.   Parameters of thermoelectric sheet 1-12718

    TED参数数值
    热电臂个数2N254
    尺寸(长×宽×厚)/mm×mm×mm50.0×50.0×3.6
    Imax/A18
    Umax/V15
    ΔTmax/ ℃66
    Qmax/W150
    Sm/(V·K−1)0.0495
    模块电阻Rm/ Ω0.6519
    模块热导率Km/(K·W−1)1.6001
    热电材料优值系数Z/ K−10.0023
    下载: 导出CSV

    表  2  石蜡的热物理性质

    Table  2.   Thermophysical properties of paraffin

    名称参数
    石蜡熔化温度/ ℃41~44
    比热容/(J·(kg·K)−1)2000
    潜热/(J·kg−1)255000
    密度/(kg·m−3)880
    热导率/(W·(m·K)−1)0.2
    下载: 导出CSV

    表  3  热电装置各部分热阻

    Table  3.   Thermal resistances of TED system

    各部分热阻数值 /(K·W−1)
    热界面材料热阻Rtim0.055
    #8电池到铝壳的热阻Rbm0.064
    散热器热阻Rsink0.009
    远程换热器热阻Rhea0.070
    冷却模组时TED冷端热阻Rbc0.119
    冷却模组时TED热端热阻Rha0.091
    加热模组时TED冷端热阻Rca0.091
    加热模组时TED热端热阻Rbh0.119
    下载: 导出CSV
  • [1] YI J, KIM U S, SHIN C B, et al. Modeling the temperature dependence of the discharge behavior of a lithium-ion battery in low environmental temperature[J] . Journal of Power Sources,2013,244:143 − 148. doi: 10.1016/j.jpowsour.2013.02.085
    [2] PESARAN A A. Battery thermal models for hybrid vehicle simulations[J] . Journal of Power Sources,2002,110(2):377 − 382. doi: 10.1016/S0378-7753(02)00200-8
    [3] WU M S, CHIANG P C J. High-rate capability of lithium-ion batteries after storing at elevated temperature[J] . Electrochimica Acta,2007,52(11):3719 − 3725. doi: 10.1016/j.electacta.2006.10.045
    [4] RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance[J] . Journal of Power Sources,2002,112(2):606 − 613. doi: 10.1016/S0378-7753(02)00474-3
    [5] MENALE C, D'ANNIBALE F, MAZZAROTTA B, et al. Thermal management of lithium-ion batteries: An experimental investigation[J] . Energy,2019,182:57 − 71. doi: 10.1016/j.energy.2019.06.017
    [6] BANDHAUER T M, GARIMELLA S, FULLER T F. A critical review of thermal issues in lithium-ion batteries[J] . Journal of The Electrochem Society,2011,158(3):21 − 25. doi: 10.1149/1.3515880
    [7] RAO Z H, WANG S F. A review of power battery thermal energy management[J] . Renewable and Sustainable Energy Reviews,2011,15:4554 − 4571. doi: 10.1016/j.rser.2011.07.096
    [8] SONG H S, JEONG J B, LEE B H, et al. Experimental study on the effects of pre-heating a battery in a low-temperature environment[C]//Proceedings of 2012 IEEE Vehicle Power and Propulsion Conference. Seoul: IEEE, 2012: 1198-1201.
    [9] ZHANG T S, GAO C, GAO Q, et al. Status and development of electric vehicle integrated thermal management from BTM to HVAC[J] . Applied Thermal Engineering,2015, 88: 398 − 409. doi: 10.1016/j.applthermaleng.2015.02.001
    [10] MATTHE R, TURNER L, METTLACH H. VOLTEC battery system for electric vehicle with extended range[J] . SAE International Journal of Engines,2011,4(1):1944 − 1962. doi: 10.4271/2011-01-1373
    [11] WANG Z W, ZHANG H Y, XIA X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure[J] . International Journal of Heat and Mass Transfer,2017,109:958 − 970. doi: 10.1016/j.ijheatmasstransfer.2017.02.057
    [12] YANG H, ZHANG H Y, SUI Y, et al. Numerical analysis and experimental visualization of phase change material melting process for thermal management of cylindrical power battery[J] . Applied Thermal Engineering,2018,128:489 − 499. doi: 10.1016/j.applthermaleng.2017.09.022
    [13] ZHAO D L, TAN G. A review of thermoelectric cooling: Materials, modeling and applications[J] . Applied Thermal Engineering,2014,66(1-2):15 − 24. doi: 10.1016/j.applthermaleng.2014.01.074
    [14] RIFFAT S B, MA X. Improving the coefficient of performance of thermoelectric cooling systems: A review[J] . International Journal of Energy Research,2004,28(8):753 − 768.
    [15] SUH I S, CHO H, LEE M. Feasibility study on thermoelectric device to energy storage system of an electric vehicle[J] . Energy,2014,76:436 − 444. doi: 10.1016/j.energy.2014.08.040
    [16] 王宇, 张国庆, 刘湘云. 半导体制冷技术在动力电池热管理中的应用研究[J] . 广东化工,2015,42(13):16 − 17. doi: 10.3969/j.issn.1007-1865.2015.13.008
    [17] ALAOUI C, SALAMEH Z M. Solid state heater cooler: Design and evaluation[C]//Proceedings of 2001 Large Engineering Systems Conference on Power Engineering. Halifax: IEEE, 2001: 139-145.
    [18] ALAOUI C, SALAMEH Z M. A novel thermal management for electric and hybrid vehicles[J] . IEEE Transactions on Vehicular Technology,2005,54(2):468 − 476. doi: 10.1109/TVT.2004.842444
    [19] ZHANG H Y, MUI Y C, TARIN M. Analysis of thermoelectric cooler performance for high power electronic packages[J] . Applied Thermal Engineering,2010,30(6-7):561 − 568. doi: 10.1016/j.applthermaleng.2009.10.020
    [20] JIANG L, ZHANG H Y, LI J W, et al. Thermal performance of a cylindricalbattery module impregnated with PCM composite based on thermoelectric cooling[J] . Energy,2019,118:116048.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  49
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 刊出日期:  2023-06-20

目录

    /

    返回文章
    返回