留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子对接和药效团的磷脂酶PLA2G1B抑制剂的虚拟筛选

王玉婷 刘霞 彭媛媛 王潇婕 赵琳静

王玉婷, 刘霞, 彭媛媛, 王潇婕, 赵琳静. 基于分子对接和药效团的磷脂酶PLA2G1B抑制剂的虚拟筛选[J]. 上海工程技术大学学报, 2022, 36(3): 295-300. doi: 10.12299/jsues.22-0051
引用本文: 王玉婷, 刘霞, 彭媛媛, 王潇婕, 赵琳静. 基于分子对接和药效团的磷脂酶PLA2G1B抑制剂的虚拟筛选[J]. 上海工程技术大学学报, 2022, 36(3): 295-300. doi: 10.12299/jsues.22-0051
WANG Yuting, LIU Xia, PENG Yuanyuan, WANG Xiaojie, ZHAO Linjing. Virtual screening of phospholipase PLA2G1B inhibitors based on molecular docking and pharmacophore[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 295-300. doi: 10.12299/jsues.22-0051
Citation: WANG Yuting, LIU Xia, PENG Yuanyuan, WANG Xiaojie, ZHAO Linjing. Virtual screening of phospholipase PLA2G1B inhibitors based on molecular docking and pharmacophore[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 295-300. doi: 10.12299/jsues.22-0051

基于分子对接和药效团的磷脂酶PLA2G1B抑制剂的虚拟筛选

doi: 10.12299/jsues.22-0051
基金项目: 国家自然科学基金项目资助 (31701032)
详细信息
    作者简介:

    王玉婷 (1994−),女,在读硕士,研究方向为天然药物. E-mail: 194588117@qq.com

    通讯作者:

    赵琳静 (1979−),女,副教授,博士,研究方向为天然药物功效基础及作用机制. E-mail: ljzhao@sues.edu.cn

  • 中图分类号: R914

Virtual screening of phospholipase PLA2G1B inhibitors based on molecular docking and pharmacophore

  • 摘要:

    磷脂酶PLA2G1B 与饮食诱导肥胖及相关代谢紊乱密切联系,研究表明一些天然类黄酮化合物对磷脂酶有抑制作用. 采用整合分子对接和药效团策略筛选PLA2G1B靶向小分子抑制剂. 对5种类黄酮化合物与PLA2G1B靶标进行分子模拟对接,分析其相互作用,建立基于配体分子共同特征(HipHop)的药效团模型,应用该模型对ZINC数据库中小分子化合物进行筛选,并对匹配评分良好的化合物进行类药性和药代动力学性质(ADME)预测分析. 结果表明,山柰酚、木犀草素、槲皮素、杨梅素和表没食子儿茶素没食子酸酯与PLA2G1B均能较好结合,结合能为−7.17~−6.17 kJ/mol;所构建的药效团模型含有3个氢键供体和1个氢键受体4个特征元素;通过对ZINC数据库中10 897个小分子的筛选,共得到722个分子,命中率为6.6%. 其中匹配评分>2.5的29个化合物均满足Lipinski规则,大部分化合物的ADME参数良好. 研究结果为PLA2G1B抑制剂设计及先导化合物发现提供了参考数据.

  • 图  1  类黄酮化合物与PLA2G1B 靶点的分子对接相互作用模式图

    Figure  1.  Interaction pattern diagram between PLA2G1B target and flavonoid compounds

    图  2  类黄酮化合物与优选药效团的匹配图

    Figure  2.  Matching pattern diagrams of flavonoid compounds with preferred pharmacophore

    表  1  分子对接结合自由能和氢键作用结果

    Table  1.   Results of binding energies and hydrogen bond interactions by molecular docking

    化合物名称结合能/(kJ·mol−1)氢键作用
    山柰酚(Kaempferol)−7.17ARG−6、ASN−23、TYR−22、TYR−69
    木犀草素(Luteolin)−6.80AGR−6、ASN−23、ASP−49
    槲皮素(Quercetin)−6.32ASP−53和ASN−23
    杨梅素(Myricetin)−6.19ASN−23、ASP−53、GLY−32
    表没食子儿茶素没食子酸酯(Epigallocatechin gallate)−6.17ASN−101、CYS−44、THR−47、ASN−50、PHE−94
    下载: 导出CSV

    表  2  10 个基于分子共同特征的药效团的结果参数

    Table  2.   Parameters of ten common features of pharmacophore

    模型编号特征元素评分最高匹配
    01DDDA56.5324
    02DDDA56.4304
    03DDAA56.2074
    04DDDA56.0174
    05DDAA56.0134
    06DDDA55.5714
    07DDDA55.5714
    08DDAA55.5324
    09DDAA55.5324
    10DDAA55.5324
    下载: 导出CSV

    表  3  基于药效团筛选、类药性及ADME分析得到29个小分子各项得分值

    Table  3.   Scores of each index of 29 molecules obtained based on pharmacophore screening, drug-likeness and ADME analysis

    序号化合物匹配评分Lipinski规则Veber规则AbsorptionSolubilityBBBCYP2D6PPB
    1ZINC0011511737183.17YesNo344FalseFalse
    2ZINC0014542825513.06YesYes354FalseFalse
    3ZINC0015580220863.01YesYes154FalseFalse
    4ZINC0013633164022.94YesYes244FalseFalse
    5ZINC0011792275522.92YesYes144FalseFalse
    6ZINC0013634917462.91YesYes043FalseFalse
    7ZINC0008246802282.91YesNo244FalseFalse
    8ZINC0012944557522.83YesYes154FalseFalse
    9ZINC0008259298512.82YesNo244FalseFalse
    10ZINC0011768456532.75YesNo344FalseFalse
    11ZINC0011309589542.67YesNo354FalseFalse
    12ZINC0003477375002.66YesYes254FalseFalse
    13ZINC0014119735222.66YesYes154FalseFalse
    14ZINC0014425879812.65YesYes354FalseFalse
    15ZINC0014340774532.62YesYes254FalseFalse
    16ZINC0013627201572.62YesYes254FalseFalse
    17ZINC0008246802272.61YesNo244FalseFalse
    18ZINC0014340774502.61YesYes254FalseFalse
    19ZINC0013462178252.61YesYes354FalseFalse
    20ZINC0011381905372.60YesYes154FalseFalse
    21ZINC0003375968652.60YesYes154FalseFalse
    22ZINC0011792275512.58YesYes144FalseFalse
    23ZINC0011423782762.57YesYes354FalseFalse
    24ZINC0010515057472.54YesNo354FalseFalse
    25ZINC0010903983822.54YesNo344FalseFalse
    26ZINC0015927499232.54YesNo354FalseFalse
    27ZINC0003526142432.53YesNo354FalseFalse
    28ZINC0011689460472.51YesNo154FalseFalse
    29ZINC0011331164142.51YesNo354FalseFalse
    下载: 导出CSV
  • [1] WANG Y, XUE H, SUN M, et al. Prevention and control of obesity in China[J] . Lancet Glob Health,2019,7(9):1166 − 1167. doi: 10.1016/S2214-109X(19)30276-1
    [2] BRAY G A, KIM K K, WILDING J P H. Obesity: A chronic relapsing progressive disease process. A position statement of the world obesity federation[J] . Obesity Reviews,2017,18(7):715 − 723. doi: 10.1111/obr.12551
    [3] CASH J G, KONANIAH E, HEGDE N, et al. Therapeutic reduction of lysophospholipids in the digestive tract recapitulates the metabolic benefits of bariatric surgery and promotes diabetes remission[J] . Molecular Metabolism,2018,16:55 − 64. doi: 10.1016/j.molmet.2018.07.009
    [4] HUANG J B, WANG Y J, XIE Z W, et al. The anti-obesity effects of green tea in human intervention and basic molecular studies[J] . European Journal of Clinical Nutrition,2014,68(10):1075 − 1087. doi: 10.1038/ejcn.2014.143
    [5] 贾旭东. 茶类黄酮类功能及其应用[J] . 国外医学(卫生学分册),2001,28(6):369 − 371.
    [6] SABE V T, NTOMBELA T, JHAMBA L A, et al. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review[J] . European Journal of Medicinal Chemistry,2021,224:113705. doi: 10.1016/j.ejmech.2021.113705
    [7] WANG L L, HAI Y, AN L J, et al. Rapid screening the potential mechanism-based inhibitors of CYP3A4 from tripterygium wilfordi based on computer approaches combined with in vitro bioassay[J] . Bioorganic & Medicinal Chemistry,2017,25(10):2689 − 2700. doi: 10.1016/j.bmc.2017.03.037
    [8] SHARMA P, JOSHI T, JOSHI T, et al. In silico screening of potential antidiabetic phytochemicals from phyllanthus emblica against therapeutic targets of type 2 diabetes[J] . Journal of Ethnopharmacology,2020,248:112268. doi: 10.1016/j.jep.2019.112268
    [9] RICHMOND B L, HUI D Y. Molecular structure and tissue-specific expression of the mouse pancreatic phospholipase A2 gene[J] . Gene,2000,244(1/2):65 − 72. doi: 10.1016/S0378-1119(00)00006-8
    [10] HUI D Y. Group 1B phospholipase A2 in metabolic and inflammatory disease modulation[J] . Biochimica et Biophysica Acta (BBA): Molecular and Cell Biology of Lipids,2019,1864(6):784 − 788.
    [11] WANG S, NOH S K, KOO S I. Green tea catechins inhibit pancreatic phospholipase A2 and intestinal absorption of lipids in ovariectomized rats[J] . Journal of Nutritional Biochemistry,2006,17(7):492 − 498. doi: 10.1016/j.jnutbio.2006.03.004
    [12] MOON H, CHOI H H, LEE J Y, et al. Quercetin inhalation inhibits the asthmatic responses by exposure to aerosolized-ovalbumin in conscious guinea-pigs[J] . Archives of Pharmacal Research,2008,31(6):771 − 778. doi: 10.1007/s12272-001-1225-2
    [13] LäTTIG J, BöHL M, FISCHER P, et al. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: rationale for lead design[J] . Journal of Computer-Aided Molecular Design,2007,21(8):473 − 483. doi: 10.1007/s10822-007-9129-8
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  55
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回