留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SPTA−PVA/CDA−GO/PVDF复合膜的制备与表征

徐悦 曾正 袁海宽 陆杰

徐悦, 曾正, 袁海宽, 陆杰. SPTA−PVA/CDA−GO/PVDF复合膜的制备与表征[J]. 上海工程技术大学学报, 2022, 36(4): 341-346. doi: 10.12299/jsues.22-0132
引用本文: 徐悦, 曾正, 袁海宽, 陆杰. SPTA−PVA/CDA−GO/PVDF复合膜的制备与表征[J]. 上海工程技术大学学报, 2022, 36(4): 341-346. doi: 10.12299/jsues.22-0132
XU Yue, ZENG Zheng, YUAN Haikuan, LU Jie. Preparation and characterization of SPTA−PVA/CDA−GO/PVDF composite membrane[J]. Journal of Shanghai University of Engineering Science, 2022, 36(4): 341-346. doi: 10.12299/jsues.22-0132
Citation: XU Yue, ZENG Zheng, YUAN Haikuan, LU Jie. Preparation and characterization of SPTA−PVA/CDA−GO/PVDF composite membrane[J]. Journal of Shanghai University of Engineering Science, 2022, 36(4): 341-346. doi: 10.12299/jsues.22-0132

SPTA−PVA/CDA−GO/PVDF复合膜的制备与表征

doi: 10.12299/jsues.22-0132
详细信息
    作者简介:

    徐悦:徐 悦(1993−),女,助理研究员,博士,研究方向为制药分离工程. E-mail: xuyue9326@163.com

    通讯作者:

    袁海宽(1978−),男,高级工程师,博士,研究方向为膜分离. E-mail: yhk12345@163.com,yuanhk@sues.edu.cn

  • 中图分类号: TQ028.8

Preparation and characterization of SPTA−PVA/CDA−GO/PVDF composite membrane

  • 摘要:

    用1,4−环己二胺(CDA)修饰氧化石墨烯(GO),利用4−磺基邻苯二甲酸(SPTA)对聚乙烯醇(PVA)进行交联,以亲水化的聚偏氟乙烯(PVDF)超滤膜为底膜,通过真空过滤与滴涂,制备SPTA−PVA/CDA−GO/PVDF复合膜. 采用全反射傅里叶变换红外光谱(ATR−FTIR)、扫描电子显微镜(SEM)和接触角测试对复合膜表征,并测试复合膜的渗透汽化脱盐性能. 结果表明,CDA修饰扩大了GO纳米片的层间距,增加了CDA−GO层的透水性;交联PVA层提高了复合膜的表面亲水性和稳定性,增强了复合膜吸水性和水传输性能. 复合膜在70 ℃对质量分数为3.5%的氯化钠(NaCl)水溶液获得15.6 kg/(m2•h)的水通量和99.99%的脱盐率.

  • 图  1  SPTA−PVA/CDA−GO/PVDF 膜的制造图解

    Figure  1.  Illustration of fabrication of SPTA−PVA/CDA−GO/PVDF membrane

    图  2  复合膜的ATR−FTIR光谱

    Figure  2.  ATR−FTIR spectra of composite membranes

    图  3  GO/PVDF (a, d)、CDA−GO/PVDF (b) 和SPTA−PVA/CDA−GO/PVDF (c, e, f) 膜SEM表面和截面图像

    Figure  3.  Surface and cross-sectional SEM images of GO/PVDF (a, d), CDA−GO/PVDF (b)and SPTA−PVA/CDA−GO/PVDF (c, e, f) membranes

    图  4  复合膜的水接触角

    Figure  4.  Water contact angle of composite membranes

    图  5  不同SPTA含量的复合膜的渗透汽化脱盐性能

    Figure  5.  Pervaporation desalination performance of composite membranes with different SPTA contents

    图  6  不同CDA浓度的复合膜的渗透汽化脱盐性能

    Figure  6.  Pervaporation desalination performance of composite membranes with different CDA concentrations

    图  7  M7在不同浓度盐溶液中的渗透汽化脱盐性能

    Figure  7.  Pervaporation desalination performance of M7 with different salt concentrations

    图  8  M7在不同进料温度下的渗透汽化脱盐性能

    Figure  8.  Pervaporation desalination performance of M7 at different feed temperatures

    表  1  膜编号及对应膜的组成

    Table  1.   Membrane number and composition of corresponding membrane

    膜编号c(GO)/(mg•mL−1)c(CDA)/(mol•L−1)ωPVA/%ωSPTA/%
    M00.1
    M10.10.255
    M20.10.05
    M30.10.0250.255
    M40.10.10.255
    M50.10.050.250
    M60.10.050.253
    M70.10.050.255
    M80.10.050.257
    下载: 导出CSV
  • [1] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J] . Nature,2008,452:301 − 310. doi: 10.1038/nature06599
    [2] ELIMELECH M, PHILLIP W A. The future of seawater desalination: Energy, technology, and the environment[J] . Science,2011,333:712 − 717. doi: 10.1126/science.1200488
    [3] 王华, 刘艳飞, 彭东明, 等. 膜分离技术的研究进展及应用展望[J] . 应用化工,2013,42(3):532 − 534.
    [4] SALEEM H, ZAIDI S J. Nanoparticles in reverse osmosis membranes for desalination: A state of the art review[J] . Desalination,2020,475:114171. doi: 10.1016/j.desal.2019.114171
    [5] ZHAO P B, MENG J Q, ZHANG R, et al. Molecular design of chlorine-resistant polymer for pervaporation desalination[J] . Separation and Purification Technology,2021,268:11867.
    [6] CHEN X, ZHU Y B, LIU J Z, et al. Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination[J] . Journal of Membrane Science,2021,621:118934. doi: 10.1016/j.memsci.2020.118934
    [7] BOLTO B, TRAN T, HOANG M, et al. Crosslinked poly (vinyl alcohol) membranes[J] . Progress in Polymer Science,2009,34:969 − 981. doi: 10.1016/j.progpolymsci.2009.05.003
    [8] LIANG B, LI Q, CAO B, et al. Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes[J] . Desalination,2018,433:132 − 140. doi: 10.1016/j.desal.2018.01.028
    [9] ALKHOUZAAM A, QIBLAWEY H. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review[J] . Chemosphere,2021,274:129853. doi: 10.1016/j.chemosphere.2021.129853
    [10] LIANG B, ZHAN W, QI G G, et al. High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications[J] . Journal of Materials Chemistry A,2015,3(9):5140 − 5147. doi: 10.1039/C4TA06573E
    [11] LIN H, DANGWAL S, LIU R C, et al. Reduced wrinkling in GO membrane by grafting basal-plane groups for improved gas and liquid separations[J] . Journal of Membrane Science,2018,563:336 − 344. doi: 10.1016/j.memsci.2018.05.073
    [12] QIAN Y L, ZHOU C, HUANG A S. Cross-linking modification with diamine monomers to enhance desalination performance of graphene oxide membranes[J] . Carbon,2018,136:28 − 37. doi: 10.1016/j.carbon.2018.04.062
    [13] NIKKHAH S, TAHERMANSOURI H, CHEKIN F. Synthesis, characterization, and electrochemical properties of the modified graphene oxide with 4, 40-methylenedianiline[J] . Materials Letters,2018,211:323 − 327.
    [14] NIGIZ F U. Graphene oxide-sodium alginate membrane for seawater desalination through pervaporation[J] . Desalination,2020,485:114465.
    [15] ZHAO X Y, TONG Z Q, LIU X F, et al. Facile Preparation of polyamide−graphene oxide composite membranes for upgrading pervaporation desalination performances of hypersaline solutions[J] . Industrial & Engineering Chemistry Research,2020,59(26):12232 − 12238.
    [16] WANG Q Z, LI N, BOLTO B, et al. Desalination by pervaporation: A review[J] . Desalination,2016,387:46 − 60. doi: 10.1016/j.desal.2016.02.036
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  97
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-07
  • 刊出日期:  2022-12-30

目录

    /

    返回文章
    返回