Volume 38 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHANG Hao, YE Xin, XIA Peng, PAN Nanxu, LI Xianfa, YU Tingting, ZHANG Pengfei. Research on lightweight solver for welding thermal cycle based on Lagrange-Galerkin finite element method[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 44-49. doi: 10.12299/jsues.23-0152
Citation: ZHANG Hao, YE Xin, XIA Peng, PAN Nanxu, LI Xianfa, YU Tingting, ZHANG Pengfei. Research on lightweight solver for welding thermal cycle based on Lagrange-Galerkin finite element method[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 44-49. doi: 10.12299/jsues.23-0152

Research on lightweight solver for welding thermal cycle based on Lagrange-Galerkin finite element method

doi: 10.12299/jsues.23-0152
  • Received Date: 2023-06-24
  • Publish Date: 2024-03-30
  • The welding thermal cycle has many interfering factors, fast changing speed and wide influence range, so it is often necessary to predict and control them immediately to ensure the welding quality. Taking the temperature distribution and change of weld center as the research object, and it was simplified to the transient heat conduction problem of one-dimensional welding heat cycle. Based on Lagrange-Galerkin finite element method, a lightweight welding thermal cycle algorithm was developed to study the immediate changes of the temperature distribution curve and change curve of the weld center at different times. The results show that the calculation time is about 0.41~0.72 s, which meets the requirements of data and lightweight calculation.
  • loading
  • [1]
    SUN J, DILGER K. Reliability analysis of thermal cycle method on the prediction of residual stresses in arc-welded ultra-high strength steels[J] . International Journal of Thermal Sciences,2023,185:108085.
    [2]
    XUJ, WANG S, CHAI Z, et al. Characterization and modeling of the hardening and softening behaviors for 7XXX aluminum alloy subjected to welding thermal cycle[J] . Mechanics of Materials,2022,172:104405.
    [3]
    张萍, 韩涛. 不同因素对管道带压焊热循环曲线的影响分析[J] . 北京石油化工学院学报,2022,30(2):1 − 5.
    [4]
    廖娟, 程鹏, 冯芳等. 基于热循环曲线法的低合金高强钢对接接头焊接残余应力数值模拟[J] . 机械工程材料,2023,47(7):85 − 90.
    [5]
    寇东旭, 陈重毅, 陈正宗等. 焊接热循环及峰值温度对C-HRA-2镍基合金组织演变的影响(英文)[J] . 稀有金属材料与工程,2023,52(7):2377 − 2384.
    [6]
    王刚, 尹立孟, 唐丽等. 经历多次热循环的X80管线钢焊接粗晶区的组织性能研究[J] . 重庆科技学院学报(自然科学版),2023,25(1):57 − 61 , 104.
    [7]
    HERNÁNDEZ M, AMBRIZ R R, CORTÉS R, et al. Assessment of gas tungsten arc welding thermal cycles on Inconel 718 alloy[J] . Transactions of Nonferrous Metals Society of China,2019,29(3):579 − 587.
    [8]
    鲍亮亮, 王勇, 张洪杰等. EQ70钢激光电弧复合焊焊接热循环及其对热影响区组织演变的影响[J] . 焊接学报,2021,42(3):26 − 33 , 99.
    [9]
    胡美娟, 何浩华, 齐丽华等. 焊接物理模拟热循环计算公式的研究[J] . 石油管材与仪器,2020,6(5):50 − 53.
    [10]
    黄鹏儒, 周勇. 连续油管在制管和焊接热循环模拟过程中组织性能的变化[J] . 热加工工艺,2020,49(17):15 − 18 , 23.
    [11]
    霍春梅, 唐春, 凌锡春. 液力变矩器盖总成焊接热循环仿真应用研究[J] . 机械工程师,2020(6):109 − 111.
    [12]
    王泽平, 房雲峰, 姜宝龙等. 基于Arduino的焊接热循环测试系统[J] . 内燃机与配件,2020(9):248 − 249.
    [13]
    许波. X80管线钢焊接热循环参数及残余应力仿真与实验研究[D]. 乌鲁木齐: 新疆大学, 2021.
    [14]
    ÁLVAREZ HOSTOS J C, STORTI B, TOURN B A, et al. Solving heat conduction problems with a moving heat source in arc welding processes via an overlapping nodes scheme based on the improved element-free Galerkin method[J] . International Journal of Heat and Mass Transfer,2022,192:122940.
    [15]
    CHAMPAGNE O, PHAM X-T. Numerical simulation of moving heat source in arc welding using the Element-free Galerkin method with experimental validation and numerical study[J] . International Journal of Heat and Mass Transfer,2020,154:119633.
    [16]
    LIU K, LAKHOTE M, BALACHANDAR S. Self-induced temperature correction for inter-phase heat transfer in Euler-Lagrange point-particle simulation[J] . Journal of Computational Physics,2019,396:596 − 615.
    [17]
    MOJAVER P, JAFARMADAR S, KHALILARYA S, et al. Investigation and optimization of a Co-Generation plant integrated of gasifier, gas turbine and heat pipes using minimization of Gibbs free energy, Lagrange method and response surface methodology[J] . International Journal of Hydrogen Energy,2020,45(38):19027 − 19044.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (24) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return