SONG Jiqiang, ZHANG Aihua, YANG Lingyao. Trajectory tracking control of micro positioning platform based on dynamic sliding mode[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 261-266. doi: 10.12299/jsues.21-0193
Citation: SONG Jiqiang, ZHANG Aihua, YANG Lingyao. Trajectory tracking control of micro positioning platform based on dynamic sliding mode[J]. Journal of Shanghai University of Engineering Science, 2022, 36(3): 261-266. doi: 10.12299/jsues.21-0193

Trajectory tracking control of micro positioning platform based on dynamic sliding mode

doi: 10.12299/jsues.21-0193
  • Received Date: 2021-09-22
  • Publish Date: 2022-06-30
  • As a high-precision motion platform, the micro positioning platform driven by the voice coil motor is widely used in precision machining, micro-electromechanical and other fields. Aiming at the high-precision and stable tracking control problem of the micro positioning platform driven by the voice coil motor, combining normalization method with theoretical modeling parameters, a mathematical model of second-order differential equation with parameter uncertainties was established, and the actual displacement of the flexible mechanism was taken as input and the platform control rate was taken as output. In view of the uncertain characteristics of the model parameters, the second-order sliding mode surface of the error was established to propose tracking control of micro positioning platform based on dynamic sliding mode, and the conclusion of system stability through Lyapunov's stability theory was obtained. The proposed control algorithm was analyzed by platform test comparison, the results show that the proposed dynamic sliding mode control algorithm can complete the trajectory tracking with less chatter. The tracking accuracy of the algorithm has improved by 13.4% and 4% compared to traditional sliding mode control, which has a smoother tracking and a good engineering prospects.

  • [1]
    WU Z Y, XU Q S. Design, optimization and testing of a compact XY parallel nanopositioning stage with stacked structure[J] . Mechanism & Machine Theory,2018,126:171 − 188.
    [2]
    田延岭, 包亚洲, 王福军, 等. 音圈电机驱动的柔性定位平台设计与控制[J] . 天津大学学报(自然科学与工程技术版),2017,50(10):1070 − 1076.
    [3]
    柴嘉伟, 贵献国. 音圈电机结构优化及应用综述[J] . 电工技术学报,2021,36(6):1113 − 1125.
    [4]
    余江. 压电驱动微定位平台的控制及评价研究[D]. 重庆: 重庆大学, 2019.
    [5]
    潘炜. 压电驱动微定位平台迟滞动态建模与控制方法研究[D]. 长春: 吉林大学, 2020.
    [6]
    周淼磊, 张敬爱, 赵宇, 等. 压电微定位平台神经网络与专家模糊复合控制方法[J] . 控制与决策,2018,33(1):95 − 100.
    [7]
    高为炳. 变结构控制理论基础[M]. 北京: 中国科学技术出版社, 1990.
    [8]
    刘金琨. 滑模变结构控制Matlab仿真[M]. 北京: 清华大学出版社, 2012.
    [9]
    蓝益鹏, 王靖腾, 刘欣. 可控励磁直线同步电动机的全局积分Terminal滑模控制[J] . 控制理论与应用,2019,36(6):931 − 938. doi: 10.7641/CTA.2018.80198
    [10]
    张瑶, 马广富, 郭延宁, 等. 一种多幂次滑模趋近律设计与分析[J] . 自动化学报,2016,42(3):466 − 472.
    [11]
    田福庆, 姜尚, 梁伟阁. 含齿隙弹载舵机的全局反步模糊自适应控制[J] . 自动化学报,2019,45(6):1177 − 1185.
    [12]
    许叙遥, 林辉. 基于动态滑模控制的永磁同步电机位置速度一体化设计[J] . 电工技术学报,2014,29(5):77 − 83. doi: 10.3969/j.issn.1000-6753.2014.05.011
    [13]
    朱庆华, 董瑞琦, 马广富. 基于动态滑模控制的挠性航天器姿态控制[J] . 控制理论与应用,2018,35(10):1430 − 1435. doi: 10.7641/CTA.2018.70863
    [14]
    何雄, 张农, 孔国玲. 基于动态滑模算法的AMT选换挡电机控制[J] . 中国机械工程,2016,27(10):1414 − 1419. doi: 10.3969/j.issn.1004-132X.2016.10.023
  • Relative Articles

    [1]SUN Haoyue, HU Zhi. Force feedback control for variable parameter vascular interventional surgery robot based on terminal sliding mode[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 63-69. doi: 10.12299/jsues.23-0082
    [2]WANG Zhen, GUO Hui, FENG Qingbao, WANG Yansong, LIU Ningning. Study on high frequency radial electromagnetic wave of motor driven by frequency conversion[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 231-239. doi: 10.12299/jsues.23-0199
    [3]GAO Shaoyuan, WU Changshui. Unmanned vehicle trajectory tracking control based on weighted variable time domain MPC[J]. Journal of Shanghai University of Engineering Science, 2024, 38(2): 123-131. doi: 10.12299/jsues.23-0164
    [4]WEI Changjiang, CHEN Qiaoyu. Asynchronous sliding mode control for Markovian jumping systems in finite-time intervals[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 272-280. doi: 10.12299/jsues.23-0067
    [5]HU Junyao, TONG Dongbing. Design of active disturbance rejection controller for quadrotor unmanned aerial vehicle based on equivalent sliding-mode control method[J]. Journal of Shanghai University of Engineering Science, 2023, 37(2): 148-154. doi: 10.12299/jsues.22-0124
    [6]LI Teng, REN Hongjuan. Intelligent vehicle trajectory tracking control algorithm based on recursive least square[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 372-379, 408. doi: 10.12299/jsues.22-0209
    [7]SUN Zhiwei, LI Cong. Research on trajectory tracking control based on radial basis neural network PID and model predictive control[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 148-158. doi: 10.12299/jsues.21-0293
    [8]YANG Lingyao, ZHANG Aihua, XU Jinlong, ZHANG Zhongjie. Trajectory tracking control of Mecanum wheel omnidirectional mobile robot based on power reaching law[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 23-30. doi: 10.12299/jsues.21-0195
    [9]LIU Shijie, HUANG Zhilai, YANG Mingxing, XU Peimin. Fractional-order sliding mode control of robotic arms with boundary layer[J]. Journal of Shanghai University of Engineering Science, 2021, 35(4): 327-332.
    [10]SHI Qijing, ZHU Zina, LI Peixing, WU Di. Design and analysis of electromagnetic driver control system based on micro nano positioning[J]. Journal of Shanghai University of Engineering Science, 2021, 35(2): 150-157.
    [11]QIAN Qian, ZHANG Aihua, ZHANG Jie. Recursive Sliding-Mode Dynamic Surface Output Feedback Control for Full Actuated Ship Based on ESO[J]. Journal of Shanghai University of Engineering Science, 2020, 34(1): 22-27,40. doi: 10.3969/j.issn.1009-444X.2020.01.004
    [12]LIN Weixing, LI Xiaohang. Sliding Mode Control Based on High-Order Unknown Input Observer[J]. Journal of Shanghai University of Engineering Science, 2017, 31(2): 106-111. doi: 10.3969/j.issn.1009-444X.2017.02.003
    [13]XIAO Wenwen, ZHANG Huanhuan. Review of Ride Comfort for Electric Vehicle with Wheel Motor Drive[J]. Journal of Shanghai University of Engineering Science, 2017, 31(3): 247-251. doi: 10.3969/j.issn.1009-444X.2017.03.013
    [14]WANG Keyong, LI Peichao. Analysis of Gaseous Slip Flow in a Bidisperse Porous Parallel-Plate Microchannel[J]. Journal of Shanghai University of Engineering Science, 2016, 30(1): 1-5. doi: 10.3969/j.issn.1009-444X.2016.01.001
    [20]GUO Quan-zhong, ZHENG Jian-li. Design of Driving Engine for Multi motor Concurrency Control of Automatic Biochemical Analyzer[J]. Journal of Shanghai University of Engineering Science, 2006, 20(3): 223-225. doi: 10.3969/j.issn.1009-444X.2006.03.008
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040100200300400500
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.2 %FULLTEXT: 20.2 %META: 72.2 %META: 72.2 %PDF: 7.6 %PDF: 7.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.1 %其他: 13.1 %[]: 0.3 %[]: 0.3 %三明: 0.2 %三明: 0.2 %上海: 3.1 %上海: 3.1 %东莞: 0.1 %东莞: 0.1 %丽水: 0.3 %丽水: 0.3 %仙桃: 0.1 %仙桃: 0.1 %内江: 0.1 %内江: 0.1 %包头: 0.3 %包头: 0.3 %北京: 0.8 %北京: 0.8 %十堰: 0.1 %十堰: 0.1 %南京: 1.0 %南京: 1.0 %南平: 0.5 %南平: 0.5 %南昌: 0.3 %南昌: 0.3 %南通: 0.2 %南通: 0.2 %合肥: 4.2 %合肥: 4.2 %咸宁: 0.1 %咸宁: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.7 %嘉兴: 0.7 %大庆: 0.3 %大庆: 0.3 %大连: 0.5 %大连: 0.5 %天津: 0.7 %天津: 0.7 %太原: 0.1 %太原: 0.1 %威海: 1.2 %威海: 1.2 %宁德: 0.3 %宁德: 0.3 %宣城: 0.2 %宣城: 0.2 %宿迁: 3.1 %宿迁: 3.1 %常州: 0.1 %常州: 0.1 %广州: 1.4 %广州: 1.4 %弗吉: 0.1 %弗吉: 0.1 %张家口: 2.6 %张家口: 2.6 %徐州: 0.3 %徐州: 0.3 %德阳: 0.3 %德阳: 0.3 %成都: 0.3 %成都: 0.3 %扬州: 0.9 %扬州: 0.9 %文昌: 0.1 %文昌: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %景德镇: 0.3 %景德镇: 0.3 %杭州: 0.5 %杭州: 0.5 %桂林: 0.3 %桂林: 0.3 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.1 %沈阳: 0.1 %泉州: 0.2 %泉州: 0.2 %泸州: 0.2 %泸州: 0.2 %洛阳: 0.3 %洛阳: 0.3 %济南: 0.2 %济南: 0.2 %海东: 0.1 %海东: 0.1 %海西: 0.1 %海西: 0.1 %淄博: 0.1 %淄博: 0.1 %淮北: 0.3 %淮北: 0.3 %淮南: 0.6 %淮南: 0.6 %深圳: 0.8 %深圳: 0.8 %温州: 1.3 %温州: 1.3 %湖州: 0.6 %湖州: 0.6 %漯河: 1.4 %漯河: 1.4 %漳州: 0.5 %漳州: 0.5 %澳门: 0.1 %澳门: 0.1 %珠海: 0.2 %珠海: 0.2 %盐城: 0.1 %盐城: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.7 %福州: 0.7 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 1.4 %绍兴: 1.4 %聊城: 0.2 %聊城: 0.2 %自贡: 0.3 %自贡: 0.3 %舟山: 3.2 %舟山: 3.2 %芒廷维尤: 19.1 %芒廷维尤: 19.1 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %荆门: 0.5 %荆门: 0.5 %莆田: 0.1 %莆田: 0.1 %莱芜: 0.3 %莱芜: 0.3 %葫芦岛: 0.1 %葫芦岛: 0.1 %衢州: 0.4 %衢州: 0.4 %襄阳: 0.1 %襄阳: 0.1 %西宁: 20.0 %西宁: 20.0 %西安: 0.3 %西安: 0.3 %辽阳: 0.1 %辽阳: 0.1 %达州: 0.1 %达州: 0.1 %运城: 0.2 %运城: 0.2 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.7 %郑州: 0.7 %重庆: 0.3 %重庆: 0.3 %金华: 0.8 %金华: 0.8 %镇江: 1.6 %镇江: 1.6 %长春: 0.2 %长春: 0.2 %长沙: 0.7 %长沙: 0.7 %随州: 0.2 %随州: 0.2 %青岛: 0.3 %青岛: 0.3 %鞍山: 0.3 %鞍山: 0.3 %驻马店: 0.1 %驻马店: 0.1 %鹰潭: 0.3 %鹰潭: 0.3 %黄冈: 0.2 %黄冈: 0.2 %黄南: 0.2 %黄南: 0.2 %其他[]三明上海东莞丽水仙桃内江包头北京十堰南京南平南昌南通合肥咸宁哥伦布嘉兴大庆大连天津太原威海宁德宣城宿迁常州广州弗吉张家口徐州德阳成都扬州文昌无锡昆明景德镇杭州桂林武汉沈阳泉州泸州洛阳济南海东海西淄博淮北淮南深圳温州湖州漯河漳州澳门珠海盐城石家庄福州秦皇岛绍兴聊城自贡舟山芒廷维尤芝加哥苏州荆门莆田莱芜葫芦岛衢州襄阳西宁西安辽阳达州运城邯郸郑州重庆金华镇江长春长沙随州青岛鞍山驻马店鹰潭黄冈黄南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (845) PDF downloads(90) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return