Volume 36 Issue 2
Jun.  2022
Turn off MathJax
Article Contents
ZHANG Tianhua, ZHANG Yi, XIE Xiaojin. Enterprise credit evaluation model based on cost sensitive XGBoost[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 218-223. doi: 10.12299/jsues.21-0236
Citation: ZHANG Tianhua, ZHANG Yi, XIE Xiaojin. Enterprise credit evaluation model based on cost sensitive XGBoost[J]. Journal of Shanghai University of Engineering Science, 2022, 36(2): 218-223. doi: 10.12299/jsues.21-0236

Enterprise credit evaluation model based on cost sensitive XGBoost

doi: 10.12299/jsues.21-0236
  • Received Date: 2021-10-29
    Available Online: 2022-11-16
  • Publish Date: 2022-06-30
  • In China, the number of enterprises with bad credit is much smaller than that of enterprises with good credit. The extreme imbalance of sample categories results in the traditional credit evaluation model unable to fully learn the characteristics of bad credit enterprises during training. In order to improve the accuracy of extreme gradient boosting (XGBoost) in unbalanced classification problems such as enterprise credit evaluation, an enterprise credit evaluation model based on cost sensitive XGBoost was proposed. In the process of XGBoost algorithm fitting, the cost sensitive loss function was added to force the model to pay more attention to the characteristics of minority classes, and the bayesian optimization was introduced to adjust the hyperparameters of the model. Taking the datas of small and medium-sized enterprises in China's A-share market from 2016 to 2020 as the sample, the experimental results show that the enterprise credit evaluation model based on cost sensitive XGBoost can improve the identification accuracy of bad credit enterprises while ensuring the overall identification accuracy.

  • loading
  • [1]
    王名豪, 梁雪春. 基于CPSO-XGboost的个人信用评估[J] . 计算机工程与设计,2019,40(7):1891 − 1895.
    [2]
    刘志惠, 黄志刚, 谢合亮. 大数据风控有效吗?:基于统计评分卡与机器学习模型的对比分析[J] . 统计与信息论坛,2019,34(9):18 − 26. doi: 10.3969/j.issn.1007-3116.2019.09.003
    [3]
    夏利宇, 何晓群. 基于重抽样法处理不平衡问题的信用评级模型[J] . 管理评论,2020,32(3):75 − 84.
    [4]
    张涛, 汪御寒, 李凯, 等. 基于样本依赖代价矩阵的小微企业信用评估方法[J] . 同济大学学报(自然科学版),2020,48(1):149 − 158. doi: 10.11908/j.issn.0253-374x.19017
    [5]
    陈启伟, 王伟, 马迪, 等. 基于Ext-GBDT集成的类别不平衡信用评分模型[J] . 计算机应用研究,2018,35(2):421 − 427. doi: 10.3969/j.issn.1001-3695.2018.02.022
    [6]
    KHEMAKHEM S, BEN SAID F, BOUJELBENE Y, et al. Credit risk assessment for unbalanced datasets based on data mining, artificial neural network and support vector machines[J] . Journal of Modelling in Management,2018,13(4):932 − 951.
    [7]
    罗康洋, 王国强. 基于改进的MRMR算法和代价敏感分类的财务预警研究[J] . 统计与信息论坛,2020,35(3):77 − 85. doi: 10.3969/j.issn.1007-3116.2020.03.011
    [8]
    CHEN T, GUESTRIN C. XGBoost: A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016, 785 − 794.
    [9]
    LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J] . IEEE Transactions on Pattern Analysis & Machine Intelligence,2020,42(2):318 − 327.
    [10]
    SUN Y, WONG A K C, KAMEL M S. Classification of imbalanced data: A review[J] . International journal of pattern recognition and artificial intelligence,2009,23(4):687 − 719. doi: 10.1142/S0218001409007326
    [11]
    LI B, LIU Y, WANG X. Gradient harmonized single-stage detector[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: American Association for Artificial Intelligence, 2019: 8577 − 8584.
    [12]
    肖雨晴, 杨慧敏. 目标检测算法在交通场景中应用综述[J] . 计算机工程与应用,2021,57(6):30 − 41. doi: 10.3778/j.issn.1002-8331.2011-0361
    [13]
    PELIKAN M. Bayesian optimization algorithm [M]. Berlin, Heidelberg, 2005: 31 − 48.
    [14]
    唐红, 王栋, 宋博, 等. 基于非线性赋权XGBoost算法的航班延误分类预测[J] . 系统仿真学报,2021,33(9):2261 − 2269.
    [15]
    史佳琪, 张建华. 基于多模型融合Stacking集成学习方式的负荷预测方法[J] . 中国电机工程学报,2019,39(14):4032 − 4042.
    [16]
    王桂兰, 赵洪山, 米增强. XGBoost算法在风机主轴承故障预测中的应用[J] . 电力自动化设备,2019,39(1):73 − 77, 83.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (404) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return