Volume 35 Issue 1
Sep.  2022
Turn off MathJax
Article Contents
YE Hongbo, YANG Chao, YIN Zhixiang, YAO Bing. Neighbor full sum distinguishing total coloring of two types of Cartesian product graphs[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 91-97. doi: 10.12299/jsues.21-0252
Citation: YE Hongbo, YANG Chao, YIN Zhixiang, YAO Bing. Neighbor full sum distinguishing total coloring of two types of Cartesian product graphs[J]. Journal of Shanghai University of Engineering Science, 2022, 36(1): 91-97. doi: 10.12299/jsues.21-0252

Neighbor full sum distinguishing total coloring of two types of Cartesian product graphs

doi: 10.12299/jsues.21-0252
  • Received Date: 2021-11-14
  • Publish Date: 2022-09-26
  • Let

    \begin{document}$f:V(G) \cup E(G) \to \{ 1,2,\cdots ,k\}$\end{document}

    be a proper

    k-total coloring of a graph G. Define a weight function on total coloring as

    $ \phi (x) = f(x) + \mathop \Sigma \limits_{e \mathrel\backepsilon  x} f(e) + \mathop \Sigma \limits_{y \in N(x)} f(y) $

    , where

    $ N(x) = \{ y \in V(G)|xy \in E(G)\} $

    . If

    $ \phi (u) \ne \phi (v) $

    for any edge

    $ uv \in E(G) $

    , then f is called a neighbor full sum distinguishing k-total coloring of G. The smallest value k for which G admins a neighbor full sum distinguishing total coloring with k colors is called the neighbor full sum distinguishing  total chromatic number of G and denoted by

    ${\rm{ftnd}}{{\rm{i}}_\Sigma }(G)$

    . The research conjectures that

    ${\rm{ftnd}}{{\rm{i}}_\Sigma }(G) \leqslant \Delta  + 2$

    for every graph except for

    $ {K_2} $

    , where ∆ represents the maximum degree of G. Meanwhile, we get this parameter for Cartesian product graphs of paths and paths, paths and cycles are ∆ + 1, respectively, which confirm the above conjecture.

  • loading
  • [1]
    BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: The MaCmillan Press ltd., 1976.
    [2]
    FLANDRIN E, MARCZYK A, PRZYBYLO J, et al. Neighbor sum distinguishing index[J] . Graphs and Combinatorics,2013,29(5):1329 − 1336.
    [3]
    PILSNIAK M, WOZNIAK M. On the total-neighbor-distinguishing index by sums[J] . Graphs and Combinatorics,2015,31(3):771 − 782.
    [4]
    DONG A J, WANG G H. Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree[J] . Acta Mathematica Sinica (English Series),2014,30(4):703 − 709. doi: 10.1007/s10114-014-2454-7
    [5]
    LI H L, DING L H, LIU B Q, et al. Neighbor sum distinguishing total colorings of planar graphs[J] . Journal of Combinatorial Optimization,2015,30(3):675 − 688. doi: 10.1007/s10878-013-9660-6
    [6]
    WANG G H, YAN G Y. An improved upper bound for the neighbor sum distinguishing index of graphs[J] . Discrete Applied Mathematics,2014,175:126 − 128. doi: 10.1016/j.dam.2014.05.013
    [7]
    VIZING V G. On an estimate of the chromatic class of a p-graph[J] . Diskret Analiz,1964,3(1):25 − 30.
    [8]
    BEHZAD M. Graphs and their chromatic numbers[D]. East Lansing: Michigan State University, 1965.
    [9]
    ZHANG Z F, CHEN X E, LI J W, et al. On adjacent- vertex-distinguishing total coloring of graphs[J] . Science in China Series A: Mathematics,2005,48(3):289 − 299. doi: 10.1360/03YS0207
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (301) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return