Citation: | YUAN Xiuwen, LUO Jian, XIN Binjie, XU Yingqi. Application of computer vision technology in woven fabric structural parameters testing[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 7-11. doi: 10.12299/jsues.21-0290 |
[1] |
周建, 潘如如, 高卫东. 机器视觉在纺织中的应用现状与发展趋势[J] . 棉纺织技术,2019,47(2):15 − 17. doi: 10.3969/j.issn.1001-7415.2019.02.004
|
[2] |
张雷. 数字图像处理技术在纺织检测中的研究和应用[J] . 大众标准化,2020,325(14):217 − 218. doi: 10.3969/j.issn.1007-1350.2020.14.107
|
[3] |
谭园园. 计算机图像处理技术在纺织工业的应用与分析[J] . 轻纺工业与技术,2020,49(10):111 − 112. doi: 10.3969/j.issn.2095-0101.2020.10.047
|
[4] |
辛斌杰, 余序芬, 吴兆平. 应用图像分析技术自动识别织物的组织结构[J] . 东华大学学报 (自然科学版),2011,37(1):35 − 41.
XIN B J, Yu X F, Wu Z P. Automatic Identifying the Woven Fabric Pattern by Image Analysis Technique[J]. Journal of Donghua University(Natural Science), 2011, 37(01): 35-41.
|
[5] |
洪乾耀. 基于图像处理的机织物密度自动检测方法研究[D]. 杭州: 浙江理工大学, 2015.
|
[6] |
辛斌杰, 余序芬, 吴兆平. 机织物经纬密测量的图像处理技术[J] . 中国纺织大学学报,1999(3):34 − 37.
|
[7] |
ESCOFET J, MILLÁN MARÍA S, M RALLÓ. Modeling of woven fabric structures based on Fourier image analysis[J] . Applied Optics,2001,40(34):6170 − 6176. doi: 10.1364/AO.40.006170
|
[8] |
AJALLOUIAN F, TAVANAI H, PALHANG M, et al. A novel method for the identification of weave repeat through image processing[J] . Journal of the Textile Institute,2009,100(3):195 − 206. doi: 10.1080/00405000701660244
|
[9] |
XIN B J, HU J L, BACIU G, et al. Investigation on the classification of weave pattern based on an active grid model[J] . Textile Research Journal,2009,79(12):1123 − 1134.
|
[10] |
PAN R R, GAO W D, LI Z J, et al. Measuring thread densities of woven fabric using the fourier transform[J] . Fibres & Textiles in Eastern Europe,2015,23(1):35 − 40.
|
[11] |
ZHANG J, PAN R R, GAO W D. Automatic inspection of density in yarn-dyed fabrics by utilizing fabric light transmittance and Fourier analysis[J] . Applied Optics,2015,54(4):966 − 972. doi: 10.1364/AO.54.000966
|
[12] |
ZHANG J, PAN R R, WANG J A, et al. An efficient method for density measurement for high-tightness woven fabrics[J] . Textile Research Journal,2017,87(3):329 − 339. doi: 10.1177/0040517516629147
|
[13] |
ZHANG R, XIN B J. An investigation of density measurement method for yarn-dyed woven fabrics based on dual-side fusion technique[J] . Measurement Science and Technology,2016,27(8):085403. doi: 10.1088/0957-0233/27/8/085403
|
[14] |
XIANG Z, CHEN K F, QIAN M, et al. Yarn-dyed woven fabric density measurement method and system based on multi-directional illumination image fusion enhancement technology[J] . Journal of the Textile Institute,2020,111(10):1489 − 1501. doi: 10.1080/00405000.2019.1706222
|
[15] |
WU J, ZHONG P, LING J Y, et al. Design method of fabric density sensor based on the virtual grating with gradual constant[J] . IEEE Access,2019,7:160345 − 160362. doi: 10.1109/ACCESS.2019.2951233
|
[16] |
SCHNEIDER D, GLOY Y S, MERHOF D. Vision-based on-loom measurement of yarn densities in woven fabrics[J] . IEEE Transactions on Instrumentation and Measurement,2015,64(4):1063 − 1074. doi: 10.1109/TIM.2014.2363580
|
[17] |
SCHNEIDER D, MERHOF D. Blind weave detection for woven fabrics[J] . Pattern Analysis and Applications,2015,18(3):725 − 737. doi: 10.1007/s10044-014-0403-9
|
[18] |
张瑞. 基于双面成像技术的色织物组织识别研究[D]. 上海: 上海工程技术大学, 2016.
|
[19] |
ZHANG J, WANG J A, PAN R R, et al. A computer vision-based system for automatic detection of misarranged warp yarns in yarn-dyed fabric. Part I: Continuous segmentation of warp yarns[J] . Journal of the Textile Institute,2018,109(5):577 − 584.
|
[20] |
ZHANG J, WANG J A, PAN R R. A computer vision-based system for automatic detection of misarranged warp yarns in yarn-dyed fabric. Part II: Warp region segmentation[J] . Journal of the Textile Institute,2019,110(9):1359 − 1367.
|
[21] |
WANG J A, ZHANG J, WANG L, et al. A computer vision-based system for automatic detection of misarranged color warp yarns in yarn-dyed fabric. Part III: Yarn layout proofing[J] . Journal of the Textile Institute,2020,111(11):1614 − 1622.
|
[22] |
MENG S, PAN R R, GAO W D, et al. A multi-task and multi-scale convolutional neural network for automatic recognition of woven fabric pattern[J] . Journal of Intelligent Manufacturing,2021,32(4):1147 − 1161. doi: 10.1007/s10845-020-01607-9
|
[23] |
SABUNCU M, OZDEMIR H. Recognition of fabric weave patterns using opticalcoherence tomography[J] . Journal of the Textile Institute,2016,107(11):1406 − 1411. doi: 10.1080/00405000.2015.1114791
|
[24] |
SABUNCU M, OZDEMIR H, AKDOGAN M U. Automatic identification of weavepatterns of checked and colored fabrics using optical coherence tomography[J] . IEEE Photonics Journal,2017,9(5):1 − 8.
|
[25] |
孟朔, 夏旭文, 潘如如, 等. 基于卷积神经网络的机织物密度均匀性检测[J] . 纺织学报,2021,42(2):101 − 106. doi: 10.13475/j.fzxb.20201008406
|