Volume 37 Issue 1
Mar.  2023
Turn off MathJax
Article Contents
ZHANG Xu, LAI Leijie. Modeling and analysis of rate-dependent hysteresis characteristics of Maxwell reluctance actuator based on Prandtl−Ishlinskii model[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 27-33. doi: 10.12299/jsues.21-0307
Citation: ZHANG Xu, LAI Leijie. Modeling and analysis of rate-dependent hysteresis characteristics of Maxwell reluctance actuator based on Prandtl−Ishlinskii model[J]. Journal of Shanghai University of Engineering Science, 2023, 37(1): 27-33. doi: 10.12299/jsues.21-0307

Modeling and analysis of rate-dependent hysteresis characteristics of Maxwell reluctance actuator based on Prandtl−Ishlinskii model

doi: 10.12299/jsues.21-0307
  • Received Date: 2021-12-26
    Available Online: 2023-07-05
  • Publish Date: 2023-03-31
  • In order to overcome the strong hysteresis nonlinearity between the internal magnetic field strength and magnetic induction strength of Maxwell reluctance actuator materials and the hysteresis between the actuator control voltage and output displacement caused by the increase of magnetic leakage under the long air gap, a rate-dependent improved Prandtl−Ishlinskii (P−I) model was proposed to model the hysteresis characteristics of reluctance actuator. The structure, magnetic circuit and magnetic force model of reluctance actuator were analyzed, and the experimental system of reluctance actuator micropositioning stage based on flexible mechanism was built for the verification of hysteresis model. In order to overcome the hysteresis nonlinearity of the actuator, the traditional P−I model was optimized and improved to make it have the ability to describe the asymmetric rate-dependent hysteresis characteristics, and the particle swarm optimization algorithm was used to complete the parameter identification. The comparative experiment was used to verify the ability of the rate-dependent P−I model to describe the hysteresis nonlinearity of the reluctance actuator. The results show that the root mean square error between the output of rate-dependent P−I model and the actual output under different frequency input signals is less than 0.0049 mm, which is only 0.245% of the overall stroke, and the effectiveness and high precision of the model are proved.
  • loading
  • [1]
    谢晓丹, 王博超, 吴丹. 电磁驱动快速刀具伺服机构的电磁场和驱动力[J] . 清华大学学报(自然科学版),2008,48(8):1298 − 1301.
    [2]
    KATALENIC A , BOEIJ J D, BUTLER H, et al. Linearization of a current-actuator reluctance actuator with hysteresis compensation[J] . Mechatronics,2013,23(2):163 − 171.
    [3]
    ZHU Z, CHEN L, TO S. A novel direct drive electromagnetic XY nanopositioning stage[J] . CIRP Annals,2005,70(1):415 − 388.
    [4]
    邹亮, 李庆民, 许家响, 等. 考虑漏磁效应的永磁饱和型故障限流器磁路建模与实验研究[J] . 中国电机工程学报,2012,32(21):137 − 145.
    [5]
    向洪岗, 陈德桂, 李兴文, 等. 基于三维磁场分析建立电磁铁等效磁路的研究[J] . 西安交通大学学报,2003,37(8):4.
    [6]
    毛剑琴, 丁海山. 率相关迟滞非线性系统的智能化建模与控制[J] . 中国科学:信息科学,2009,39(3):289 − 304.
    [7]
    贺一丹, 王贞艳, 何延昭, 等. 压电陶瓷作动器的改进Duhem迟滞建模[J] . 压电与声光,2021,43(3):431 − 434. doi: 10.11977/j.issn.1004-2474.2021.03.029
    [8]
    RAKOTONDRABE M. Bouc-Wen modeling and inverse multiplicative structure to compensate hysteresis nonlinearity in piezoelectric actuators[J] . IEEE Transactions on Automation Science & Engineering,2011,8(2):428 − 431.
    [9]
    KATALENIC A. Control of reluctance actuators for high-precision positioning[D]. Eindhoven: Eindhoven University of Technology, 2013.
    [10]
    CRUZ-HERNANDEZ J M, HAYWARD V. Phase control approach to hysteresis reduction[J] . IEEE Transactions on Control Systems Technology,2001,9(1):17 − 26. doi: 10.1109/87.896742
    [11]
    ANG W, KHOSLA P, RIVIERE C. Feedforward controller With inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications[J] . IEEE/ASME Transactions on Mechatronics,2007,12(2):134 − 142. doi: 10.1109/TMECH.2007.892824
    [12]
    TAN U, LATT W, WIDJAJA F, et al. Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependent controlle[J] . Sensors and Actuators A: Physical,2009,150:116 − 123. doi: 10.1016/j.sna.2008.12.012
    [13]
    LU X D, TRUMPER D L. Ultrafast tool servos for diamond turning[J] . CIRP Annals - Manufacturing Technology,2005,54(1):383 − 388. doi: 10.1016/S0007-8506(07)60128-0
    [14]
    CSENCSICS E , SCHLARP J , SCHITTER G . Bandwidth extension of hybrid-reluctance-force-based tip/tilt system by reduction of eddy currents[C]//Proceedings of 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich: IEEE, 2017.
    [15]
    YANG M J, GU G Y, ZHU L M. Parameter identification of the generalized Prandtl–Ishlinskii model for piezoelectric actuators using modified particle swarm optimization[J] . Sensors and Actuators A: Physical,2013,189:254 − 265. doi: 10.1016/j.sna.2012.10.029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (355) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return