Citation: | MA Teng, MAO Jian. Research on path planning of mobile robot based on improved multi-step ant colony algorithm[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 255-262. doi: 10.12299/jsues.22-0174 |
[1] |
LIU J H, YANG J G, LIU H P, et al. An improved ant colony algorithm for robot path planning[J] . Soft Computing,2016,21(19):1 − 11.
|
[2] |
陈继清, 谭成志, 莫荣现, 等. 基于人工势场的A ~ *算法的移动机器人路径规划[J] . 计算机科学,2021,48(11):327 − 333. doi: 10.11896/jsjkx.200900170
|
[3] |
刘子豪, 赵津, 刘畅, 等. 基于改进A*算法室内移动机器人路径规划[J] . 计算机工程与应用,2021,57(2):186 − 190.
|
[4] |
LUO M, HOU X, YANG J. Surface optimal path planning using an extended Dijkstra algorithm[J] . IEEE Access,2020,8:147827 −38.
|
[5] |
MUR-ARTAL R, MONTIEl J M M, TARDOS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J] . IEEE Transactions on Robotics,2015,31(5):1147 − 1163. doi: 10.1109/TRO.2015.2463671
|
[6] |
张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J] . 航空学报,2019,40(3):228 − 238.
|
[7] |
高岳林, 武少华. 基于自适应粒子群算法的机器人路径规划[J] . 郑州大学学报(工学版),2020,41(4):46 − 51.
|
[8] |
巫光福, 万路萍. 粒子群算法优化机器人路径规划的研究[J] . 机械科学与技术,41,11:1759 − 1764.
|
[9] |
杨立炜, 付丽霞, 王倩, 等. 多层优化蚁群算法的移动机器人路径规划研究[J] . 电子测量与仪器学报,2021,35(9):10 − 18. doi: 10.13382/j.jemi.B2104304
|
[10] |
张晓莉, 杨亚新, 谢永成. 改进的蚁群算法在机器人路径规划上的应用[J] . 计算机工程与应用,2020,56(2):29 − 34. doi: 10.3778/j.issn.1002-8331.1907-0104
|
[11] |
曾明如, 徐小勇, 罗浩, 等. 多步长蚁群算法的机器人路径规划研究[J] . 小型微型计算机系统,2016,37(2):366 − 369. doi: 10.3969/j.issn.1000-1220.2016.02.033
|
[12] |
许凯波, 鲁海燕, 黄洋, 等. 基于双层蚁群算法和动态环境的机器人路径规划方法[J] . 电子学报,2019,47(10):2166 − 2176. doi: 10.3969/j.issn.0372-2112.2019.10.019
|
[13] |
张恒, 何丽, 袁亮, 等. 基于改进双层蚁群算法的移动机器人路径规划[J] . 控制与决策,2022,37(2):303 − 313.
|
[14] |
史恩秀, 陈敏敏, 李俊, 等. 基于蚁群算法的移动机器人全局路径规划方法研究[J] . 农业机械学报,2014,45(6):53 − 57. doi: 10.6041/j.issn.1000-1298.2014.06.009
|
[15] |
袁福龙, 朱建平. 基于改进蚁群算法的移动机器人最优路径规划[J] . 现代制造工程,2021(7):38 − 47,65. doi: 10.16731/j.cnki.1671-3133.2021.07.006
|
[16] |
马小陆, 梅宏. 基于改进势场蚁群算法的移动机器人全局路径规划[J] . 机械工程学报,2021,57(1):19 − 27.
|