Volume 37 Issue 3
Sep.  2023
Turn off MathJax
Article Contents
MA Teng, MAO Jian. Research on path planning of mobile robot based on improved multi-step ant colony algorithm[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 255-262. doi: 10.12299/jsues.22-0174
Citation: MA Teng, MAO Jian. Research on path planning of mobile robot based on improved multi-step ant colony algorithm[J]. Journal of Shanghai University of Engineering Science, 2023, 37(3): 255-262. doi: 10.12299/jsues.22-0174

Research on path planning of mobile robot based on improved multi-step ant colony algorithm

doi: 10.12299/jsues.22-0174
  • Received Date: 2022-06-01
  • Publish Date: 2023-09-30
  • Improved multi-step ant colony algorithm was proposed to solve the problems of traditional ant colony algorithm in path planning, such as poor practicability, slow convergence speed and local optimization. All the direct nodes in the field of view of the mobile robot for the improved algorithm were taken as the next optional node set, the multi-step moving method was used to find the next node in any direction and at any step length, and the optimization efficiency of the algorithm and the diversity of path planning was improved. The initial pheromones among nodes were unevenly distributed according to the distance between each node and the connecting line between current and target node, the blindness of ant colony search in the initial stage of the algorithm was reduced. By increasing the pheromone update gap between the high-quality path and the low-quality path through the path length, the heuristic function and the convergence speed of the algorithm was improved. The simulation results show that the improved algorithm has the advantages of short length, high smoothness and less steps, which are more in line with the actual needs of mobile robots. The convergence speed and the effect of path planning are significantly improved.
  • loading
  • [1]
    LIU J H, YANG J G, LIU H P, et al. An improved ant colony algorithm for robot path planning[J] . Soft Computing,2016,21(19):1 − 11.
    [2]
    陈继清, 谭成志, 莫荣现, 等. 基于人工势场的A ~ *算法的移动机器人路径规划[J] . 计算机科学,2021,48(11):327 − 333. doi: 10.11896/jsjkx.200900170
    [3]
    刘子豪, 赵津, 刘畅, 等. 基于改进A*算法室内移动机器人路径规划[J] . 计算机工程与应用,2021,57(2):186 − 190.
    [4]
    LUO M, HOU X, YANG J. Surface optimal path planning using an extended Dijkstra algorithm[J] . IEEE Access,2020,8:147827 −38.
    [5]
    MUR-ARTAL R, MONTIEl J M M, TARDOS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J] . IEEE Transactions on Robotics,2015,31(5):1147 − 1163. doi: 10.1109/TRO.2015.2463671
    [6]
    张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J] . 航空学报,2019,40(3):228 − 238.
    [7]
    高岳林, 武少华. 基于自适应粒子群算法的机器人路径规划[J] . 郑州大学学报(工学版),2020,41(4):46 − 51.
    [8]
    巫光福, 万路萍. 粒子群算法优化机器人路径规划的研究[J] . 机械科学与技术,41,11:1759 − 1764.
    [9]
    杨立炜, 付丽霞, 王倩, 等. 多层优化蚁群算法的移动机器人路径规划研究[J] . 电子测量与仪器学报,2021,35(9):10 − 18. doi: 10.13382/j.jemi.B2104304
    [10]
    张晓莉, 杨亚新, 谢永成. 改进的蚁群算法在机器人路径规划上的应用[J] . 计算机工程与应用,2020,56(2):29 − 34. doi: 10.3778/j.issn.1002-8331.1907-0104
    [11]
    曾明如, 徐小勇, 罗浩, 等. 多步长蚁群算法的机器人路径规划研究[J] . 小型微型计算机系统,2016,37(2):366 − 369. doi: 10.3969/j.issn.1000-1220.2016.02.033
    [12]
    许凯波, 鲁海燕, 黄洋, 等. 基于双层蚁群算法和动态环境的机器人路径规划方法[J] . 电子学报,2019,47(10):2166 − 2176. doi: 10.3969/j.issn.0372-2112.2019.10.019
    [13]
    张恒, 何丽, 袁亮, 等. 基于改进双层蚁群算法的移动机器人路径规划[J] . 控制与决策,2022,37(2):303 − 313.
    [14]
    史恩秀, 陈敏敏, 李俊, 等. 基于蚁群算法的移动机器人全局路径规划方法研究[J] . 农业机械学报,2014,45(6):53 − 57. doi: 10.6041/j.issn.1000-1298.2014.06.009
    [15]
    袁福龙, 朱建平. 基于改进蚁群算法的移动机器人最优路径规划[J] . 现代制造工程,2021(7):38 − 47,65. doi: 10.16731/j.cnki.1671-3133.2021.07.006
    [16]
    马小陆, 梅宏. 基于改进势场蚁群算法的移动机器人全局路径规划[J] . 机械工程学报,2021,57(1):19 − 27.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (372) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return