Volume 37 Issue 4
Dec.  2023
Turn off MathJax
Article Contents
SUN Honghua, ZHANG Nianchen, SUN Biao, LI Peng, XU Fengxia, WANG Jinguo. Study on photocatalytic nitrobenzene reduction to aniline over hierarchical flower-like Cu/TiO2[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 343-350. doi: 10.12299/jsues.22-0199
Citation: SUN Honghua, ZHANG Nianchen, SUN Biao, LI Peng, XU Fengxia, WANG Jinguo. Study on photocatalytic nitrobenzene reduction to aniline over hierarchical flower-like Cu/TiO2[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 343-350. doi: 10.12299/jsues.22-0199

Study on photocatalytic nitrobenzene reduction to aniline over hierarchical flower-like Cu/TiO2

doi: 10.12299/jsues.22-0199
  • Received Date: 2022-07-03
  • Publish Date: 2023-12-30
  • A series of metal Cu-modified hierarchical flower-like TiO2 catalysts (X% Cu/TiO2) was prepared by using an alcoholysis solvothermal method, and their photocatalytic performance were evaluated by using visible-light photocatalytic reduction of nitrobenzene to aniline as a model reaction. The results show that 3.3% Cu/TiO2 photocatalyst exhibits excellent catalytic activity, achieving 83% nitrobenzene conversion under visible-light irradiation for 3.0 h. There are two main attributions : firstly, the hierarchical structure enlarged the catalyst’s surface area and thus, improved the adsorption and diffusion of nitrobenzene and its contact efficiency with catalyst; secondly, the introduction of metal Cu reduced the catalyst’ energy band and enhanced the separation ability of photoelectron-hole, and thus enhanced the photocatalytic activity. In addition, 3.3% Cu/TiO2 also exhibits good stability and shows good potential in practical applications.
  • loading
  • [1]
    KUMAR S, SURENDAR T, KUMAR B, et al. Synthesis of magnetically separable and recyclable g-C3N4-Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation[J] . Journal of Physical Chemistry C,2013,49:26135 − 26143.
    [2]
    CORMA A, SERNA P. Chemoselective hydrogenation of nitro-compounds with supported gold catalysts[J] . Science,2006,313:332 − 334. doi: 10.1126/science.1128383
    [3]
    WU W, LIU G, XIE Q, et al. A simple and highly efficient route for the preparation of p-phenylenediamine by reducing 4-nitroaniline over commercial CdS visible light-driven photocatalyst in water[J] . Green Chemistry,2012,14:1705 − 1709. doi: 10.1039/c2gc35231a
    [4]
    吴龙华, 孙佳怡, 雷金梅, 等. 掺铁二氧化钛类芬顿对染料废水的处理研究[J] . 科技风,2020,35:176 − 178.
    [5]
    YOO H, KIM J H. Photoactive TiO2/CuxO composite films for photocatalytic degradation of methylene blue pollutant molecules[J] . Advanced Powder Technology,2021,32(4):1287 − 1293. doi: 10.1016/j.apt.2021.02.031
    [6]
    LU X F, SUN W J, LI J, et al. Spectroscopic investigations on the simulated solar light induced photodegradation of 4-nitrophenol by using three novel copper (II) porphyrin-TiO2 photocatalysts[J] . Spectrochemical Acta Part A: Molecular & Biomolecular Spectroscopy,2013,111:161 − 168.
    [7]
    LEE J H, KIM T, KIM E R, et al. Microwave-assisted synthesis of various Cu2O/Cu/TiO2 and CuxS/TiO2 composite nanoparticles towards visible-light photocatalytic applications[J] . Materials Chemistry and Physics,2021,259:123986. doi: 10.1016/j.matchemphys.2020.123986
    [8]
    KUSIOR A, SYNOWIEC M, ZAKRZEWSKA K, et al. Surface-controlled photocatalysis and chemical sensing of TiO2, α-Fe2O3, and Cu2O nanocrystals[J] . Crystals,2019,9(3):163 − 214. doi: 10.3390/cryst9030163
    [9]
    LIU J, LI X M, HE J, et al. Combining the photocatalysis and absorption properties of core-shell Cu-BTC@TiO2 microspheres: Highly efficient desulfurization of thiophenic compounds from fuel[J] . Materials (Basel),2018,11(11):2209 − 2227. doi: 10.3390/ma11112209
    [10]
    BI F, EHSAN M F, LIU W, et al. Visible-light photocatalytic conversion of carbon dioxide into methane using Cu2O/TiO2 hollow nanospheres[J] . Chinese Journal of Chemistry,2013,33:112 − 118.
    [11]
    LI D F, WANG J G, XU F X, Et al. Mesoporous (001)-TiO2 nanocrystals with tailoring Ti3 + and surface oxygen vacancies for boosting photocatalytic selective conversion of aromatic alcohols[J] . Catalysis Science & Technology,2021,11(8):2939 − 2947.
    [12]
    YANG H G, ZENG H C. Preparation of hollow anatase TiO2 nanospheres via ostwald ripening[J] . Journal of Physical Chemistry B,2004,108:3492 − 3495. doi: 10.1021/jp0377782
    [13]
    XU F X, WANG J G, LI D F, et al. Mesoporous (101)-TiO2 nanocrystals with tailoring Ti3 + and surface oxygen vacancies for boosting photocatalytic hydrogenation of nitrobenzenes[J] . Catalysis Science & Technology,2021,11:5147 − 5157.
    [14]
    TIAN F, ZHANG Y P, ZHANG J, et al. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets[J] . The Journal Physical Chemistry C,2012,116:7515 − 7519. doi: 10.1021/jp301256h
    [15]
    HUANG C J, YE W Q, LIU Q W, et al. Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction[J] . ACS Applied Materials & Interfaces,2014,6(16):14469 − 14476.
    [16]
    KAUR R, PAL B. Cu nanostructures of various shapes and sizes as superior catalysts for nitro-aromatic reduction and co-catalyst for Cu/TiO2 photocatalysis[J] . Applied Catalysis A: General,2015,491:28 − 36. doi: 10.1016/j.apcata.2014.10.035
    [17]
    HU Y H. A highly efficient photocatalyst-hydrogenated black TiO2 for the photocatalytic splitting of water[J] . Angewandte Chemie International Edition,2012,51:12410 − 12412. doi: 10.1002/anie.201206375
    [18]
    BABU S G, VINOTH R, KUMAR D P, et al. Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production[J] . Nanoscale,2015,7(17):7849 − 7857. doi: 10.1039/C5NR00504C
    [19]
    WANG J G, LIANG H, ZHANG C, et al. Bi2WO6-x nanosheets with tunable Bi quantum dots and oxygen vacancies for photocatalytic selective oxidation of alcohols[J] . Applied Catalysis B: Environmental,2019,256:117874. doi: 10.1016/j.apcatb.2019.117874
    [20]
    WANG J G, RAO P H, AN W, et al. Boosting photocatalytic activity of Pd decorated TiO2 nanocrystal with exposed (001) facets for selective alcohol oxidations[J] . Applied Catalysis B: Environmental,2016,195:41 − 48.
    [21]
    GE Y H, LUO H, HUANG J R, et al. Visible-light-active TiO2 photocatalyst for efficient photodegradation of organic dyes[J] . Optical Materials,2021,115:111058. doi: 10.1016/j.optmat.2021.111058
    [22]
    CHEN X B, MAO S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J] . Chemical Reviews,2007,107(7):2891 − 2959. doi: 10.1021/cr0500535
    [23]
    XU C, YANG F, DENG B J, et al. Ti3C2/TiO2 nanowires with excellent photocatalytic performance for selective oxidation of aromatic alcohols to aldehydes[J] . Journal of Catalysis,2019,383:1 − 12.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (262) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return