Volume 37 Issue 4
Dec.  2023
Turn off MathJax
Article Contents
WANG Wenchao, MA Qihua, ZHAO Lei. Method for recognizing and locating for multi-target stone based on intelligent breaker operation scenario[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 420-427. doi: 10.12299/jsues.22-0313
Citation: WANG Wenchao, MA Qihua, ZHAO Lei. Method for recognizing and locating for multi-target stone based on intelligent breaker operation scenario[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 420-427. doi: 10.12299/jsues.22-0313

Method for recognizing and locating for multi-target stone based on intelligent breaker operation scenario

doi: 10.12299/jsues.22-0313
  • Received Date: 2022-10-26
  • Publish Date: 2023-12-30
  • With the continuous development of intelligent construction machinery, the traditional hydraulic breaker with complex structure and single function has been gradually replaced by the increasingly mature intelligent breaker. The recognition and localization of multi-target stones is an important guarantee for intelligent crushing to improve the accuracy of action output and complete the crushing task. A target stone recognition and localization method based on segmentation-mask convolutional neural networks (Mask R-CNN) instance segmentation and light detection and ranging (LiDAR) information fusion was proposed. The Mask R-CNN instance segmentation algorithm was used to quickly identify the region of interest (RoI) of the target stone in complex operation scenarios. On the premise of ensuring the accuracy of stone detection, the position information of the crushing point was obtained by fusing lidar and the Kalman filter algorithm to guide the crushing hammer to realize the positioning operation. The results of the field tests show that the average recognition accuracy of the stone target detection model for stones is 95.35%, the recall rate is 95.06%, and the accuracy of stone breaking point recognition is 94.20%, can meet the real-time requirements.
  • loading
  • [1]
    王荣本, 顾柏园, 郭烈, 等. 月球环境感知中的石块识别方法研究[J] . 计算机工程,2006(15):174 − 175,178. doi: 10.3969/j.issn.1000-3428.2006.15.061
    [2]
    张如高. 基于机器视觉的月表石块识别方法研究[D]. 长春: 吉林大学, 2007.
    [3]
    何文轩, 荆洪迪, 柳小波, 等. 基于YOLOv4-tiny的铁矿石品位识别技术研究[J] . 金属矿山,2021(10):150 − 154. doi: 10.19614/j.cnki.jsks.202110019
    [4]
    郑银河. 复杂裂隙网络下岩石块体识别方法研究[D]. 北京: 中国地质大学, 2017.
    [5]
    HOSAINPOUR A, KOMARIZADE M H, MAHMOUDI A, et al. Feasibility of impact-acoustic emissions for discriminating between potato tubers and clods[J] . Journal of Food Agriculture and Environment,2010,8(2):565 − 569.
    [6]
    AL-MALLAHI A, KATAOKA T, OKAMOTO H. Discrimination between potato tubers and clods by detecting the significant wavebands[J] . Biosystems Engineering,2008,100(3):329 − 337. doi: 10.1016/j.biosystemseng.2008.04.013
    [7]
    AL-MALLAHI A, KATAOKA T, OKAMOTO H, et al. Detection of potato tubers using an ultraviolet imaging-based machine vision system[J] . Biosystems Engineering,2010,105(2):257 − 265. doi: 10.1016/j.biosystemseng.2009.11.004
    [8]
    谢文博. 基于改进Mask R-CNN的木材缺陷检测分割算法研究[D]. 哈尔滨: 哈尔滨理工大学, 2022.
    [9]
    高冲. 基于深度学习的堆垛目标识别定位系统研究[D]. 南京: 南京邮电大学, 2021.
    [10]
    严家金. 基于数据增强和神经网络的小样本图像分类[J] . 现代信息科技,2022,6(15):77 − 80. doi: 10.19850/j.cnki.2096-4706.2022.15.021
    [11]
    吉江燕, 方挺. 基于Labelme的参考图像的手工分割[J] . 微型机与应用,2015,34(17):49 − 51,56.
    [12]
    李文举. 基于掩膜压缩表示的实例分割方法研究[D]. 长春: 吉林大学, 2022.
    [13]
    高磊. 基于棋盘格和圆标定物的双目相机标定方法研究[D]. 呼和浩特: 内蒙古大学, 2022.
    [14]
    唐宇舟. 基于联邦卡尔曼滤波的多源异类交通数据融合技术研究[D]. 杭州: 浙江工业大学, 2020.
    [15]
    杨华. 多传感器数据融合技术在某新型无人旋翼机中的应用[D]. 南京: 南京航空航天大学, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (215) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return