Citation: | YAN Yimeng, LI Bin, QI Baoliang, CHEN Jun, JIAO Yuanjing. Output performance of composite tribo-materials based on NiFe2O4/BaTiO3[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 359-362. doi: 10.12299/jsues.22-0329 |
[1] |
SHI X L, CHEN W Y, ZHANG T, et al. Fiber-based thermoelectrics for solid, portable, and wearable electronics[J] . Energy & Environmental Science,2021,14(2):729 − 764.
|
[2] |
IM J S, PARK I K. Mechanically robust magnetic Fe3O4 nanoparticle/polyvinylidene fluoride composite nanofiber and its application in a triboelectric nanogenerator[J] . ACS Applied Materials & Interfaces,2018,10(30):25660 − 25665.
|
[3] |
GUO Y B, LI K R, HOU C Y, et al. Fluoroalkylsilane-modified textile-based personal energy management device for multifunctional wearable applications[J] . ACS Applied Materials & Interfaces,2016,8(7):4676 − 4683.
|
[4] |
CAO Y L, GUO Y B, CHEN Z X, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection[J] . Nano Energy,2022,92:106689. doi: 10.1016/j.nanoen.2021.106689
|
[5] |
METI S, SAGAR H P, RAHMAN M R, et al. Assessment of triboelectricity in colossal-surface-area-lanthanum oxide nanocrystals synthesized via low-temperature hydrothermal process[J] . Journal of Materials Science: Materials in Electronics,2021,32(15):20351 − 20361. doi: 10.1007/s10854-021-06545-7
|
[6] |
GUO Y B, CHEN Z X, YANG W F, et al. Multifunctional mechanical sensing electronic device based on triboelectric anisotropic crumpled nanofibrous mats[J] . ACS Applied Materials & Interfaces,2021,13(46):55481 − 55488.
|
[7] |
ZHANG S N, XU J M, YU J B, et al. An all-rubber-based woven nanogenerator with improved triboelectric effect for highly efficient energy harvesting[J] . Materials Letters,2021,287:129271. doi: 10.1016/j.matlet.2020.129271
|
[8] |
CHEN Z X, CAO Y L, YANG W F, et al. Embedding in-plane aligned MOF nanoflakes in silk fibroin for highly enhanced output performance of triboelectric nanogenerators[J] . Journal of Materials Chemistry A,2022,10(2):799 − 807. doi: 10.1039/D1TA08605G
|
[9] |
LIU J D, YU D, ZHENG Z P, et al. Lead-free BiFeO3 film on glass fiber fabric: Wearable hybrid piezoelectric-triboelectric nanogenerator[J] . Ceramics International,2021,47(3):3573 − 3579. doi: 10.1016/j.ceramint.2020.09.205
|
[10] |
MANCHI P, GRAHAM S A, DUDEM B, et al. Improved performance of nanogenerator via synergetic piezo/triboelectric effects of lithium niobate microparticles embedded composite films[J] . Composites Science and Technology,2021,201:108540. doi: 10.1016/j.compscitech.2020.108540
|
[11] |
GUO Y B, CHEN Z X, WANG H Z, et al. Progress of inorganic filler based composite films for triboelectric nanogenerators[J] . Journal of Inorganic Materials,2021,36(9):919 − 928. doi: 10.15541/jim20200742
|
[12] |
ZHANG J H, HAO X H. Enhancing output performances and output retention rates of triboelectric nanogenerators via a design of composite inner-layers with coupling effect and self-assembled outer-layers with superhydrophobicity[J] . Nano Energy,2020,76:105074. doi: 10.1016/j.nanoen.2020.105074
|
[13] |
GUO Y B, CAO Y L, CHEN Z X, et al. Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators[J] . Nano Energy,2020,70:104517. doi: 10.1016/j.nanoen.2020.104517
|
[14] |
DUDEM B, BHARAT L K, PATNAM H, et al. Enhancing the output performance of hybrid nanogenerators based on Al-doped BaTiO3 composite films: a self-powered utility system for portable electronics[J] . Journal of Materials Chemistry A,2018,6(33):16101 − 16110. doi: 10.1039/C8TA04612C
|
[15] |
SEUNG W, YOON H J, KIM T Y, et al. Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties[J] . Advanced Energy Materials,2017,7(2):1600988. doi: 10.1002/aenm.201600988
|