Volume 37 Issue 4
Dec.  2023
Turn off MathJax
Article Contents
WEI Chengkun, ZHOU Jun. AGV scheduling for order-driven intelligent workshop based on reinforcement learning[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 397-403. doi: 10.12299/jsues.22-0334
Citation: WEI Chengkun, ZHOU Jun. AGV scheduling for order-driven intelligent workshop based on reinforcement learning[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 397-403. doi: 10.12299/jsues.22-0334

AGV scheduling for order-driven intelligent workshop based on reinforcement learning

doi: 10.12299/jsues.22-0334
  • Received Date: 2022-11-08
  • Publish Date: 2023-12-30
  • Material transporting efficiency has an important impact on the production scheduling efficiency of the intelligent workshop. Material transporting tasks are usually executed by automated guided vehicle (AGV), which have large number of tasks, real-time changes in task demand, and intensive task issuance. In order to make the AGV workflow timely, efficient and accurate, an reinforcement-learning-based AGVs' scheduling model was established with a two-level mechanism. The first level aimes for load balancing, and assigns the tasks to AGVs in a rule-based scheduling method. The second level plans each AGV's path by a reinforcement learning deep Q-network (DQN) algorithm with single agent, which can reduce the convergence difficulty of the scheduling algorithm by reducing the dimensions of the agent's action space. The effectiveness and innovation of the method was verified through simulation examples.
  • loading
  • [1]
    CHAUDHRY I A, KHAN A A. A research survey: Review of flexible job shop scheduling techniques[J] . International Transactions in Operational Research,2016,23(3):551 − 591. doi: 10.1111/itor.12199
    [2]
    FRANCOIS-LAVET V, HENDERSON P. An Introduction to deep reinforcement learning[J] . Foundations and Trends in Machine Learning,2018,11(3/4):219 − 354. doi: 10.1561/2200000071
    [3]
    肖蒙. 考虑物料搬运的离散制造车间多资源调度[D]. 上海: 东华大学, 2022.
    [4]
    YU J L, SU Y C, LIAO Y F. The path planning of mobile robot by neural networks and hierarchical reinforcement learning[J] . Frontiers in Neurorobotics,2020,14:63. doi: 10.3389/fnbot.2020.00063
    [5]
    SOONG L E, PAULINE O, CHUN C K. Solving the optimal path planning of a mobile robot using improved Q-learning[J] . Robotics and Autonomous Systems,2019,115(3):143 − 161.
    [6]
    LIU Z X, WANG Q C, YANG B S. Reinforcement learning-based path planning algorithm for mobile robots[J] . Wireless Communications and Mobile Computing,2022,2022:1 − 10.
    [7]
    刘辉, 肖克, 王京擘. 基于多智能体强化学习的多AGV 路径规划方法[J] . 自动化与仪表,2020,35(2):84 − 89.
    [8]
    宋博伟. 基于强化学习的混流车间AGV路径规划研究[D]. 沈阳: 沈阳大学, 2021.
    [9]
    寇晨光. 订单驱动的型材车间天车智能调度研究[D]. 哈尔滨: 哈尔滨理工大学, 2018.
    [10]
    陈赐. 基于机器学习的多载量小车实时调度方法研究[D]. 上海: 上海交通大学, 2014.
    [11]
    王慧, 秦广义, 杨春梅. 定制家具板材搬运AGV路径规划[J] . 包装工程,2021,42(17):203 − 209.
    [12]
    熊俊涛, 李中行, 陈淑绵, 等. 基于深度强化学习的虚拟机器人采摘路径避障规划[J] . 农业机械学报,2020,51(S2):1 − 10.
    [13]
    杨海兰, 祁永强, 吴保磊, 等. 动态环境下基于忆阻强化学习的移动机器人路径规划[J] . 系统仿真学报,2023,35(7):1619 − 1633.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (418) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return