Citation: | WEI Chengkun, ZHOU Jun. AGV scheduling for order-driven intelligent workshop based on reinforcement learning[J]. Journal of Shanghai University of Engineering Science, 2023, 37(4): 397-403. doi: 10.12299/jsues.22-0334 |
[1] |
CHAUDHRY I A, KHAN A A. A research survey: Review of flexible job shop scheduling techniques[J] . International Transactions in Operational Research,2016,23(3):551 − 591. doi: 10.1111/itor.12199
|
[2] |
FRANCOIS-LAVET V, HENDERSON P. An Introduction to deep reinforcement learning[J] . Foundations and Trends in Machine Learning,2018,11(3/4):219 − 354. doi: 10.1561/2200000071
|
[3] |
肖蒙. 考虑物料搬运的离散制造车间多资源调度[D]. 上海: 东华大学, 2022.
|
[4] |
YU J L, SU Y C, LIAO Y F. The path planning of mobile robot by neural networks and hierarchical reinforcement learning[J] . Frontiers in Neurorobotics,2020,14:63. doi: 10.3389/fnbot.2020.00063
|
[5] |
SOONG L E, PAULINE O, CHUN C K. Solving the optimal path planning of a mobile robot using improved Q-learning[J] . Robotics and Autonomous Systems,2019,115(3):143 − 161.
|
[6] |
LIU Z X, WANG Q C, YANG B S. Reinforcement learning-based path planning algorithm for mobile robots[J] . Wireless Communications and Mobile Computing,2022,2022:1 − 10.
|
[7] |
刘辉, 肖克, 王京擘. 基于多智能体强化学习的多AGV 路径规划方法[J] . 自动化与仪表,2020,35(2):84 − 89.
|
[8] |
宋博伟. 基于强化学习的混流车间AGV路径规划研究[D]. 沈阳: 沈阳大学, 2021.
|
[9] |
寇晨光. 订单驱动的型材车间天车智能调度研究[D]. 哈尔滨: 哈尔滨理工大学, 2018.
|
[10] |
陈赐. 基于机器学习的多载量小车实时调度方法研究[D]. 上海: 上海交通大学, 2014.
|
[11] |
王慧, 秦广义, 杨春梅. 定制家具板材搬运AGV路径规划[J] . 包装工程,2021,42(17):203 − 209.
|
[12] |
熊俊涛, 李中行, 陈淑绵, 等. 基于深度强化学习的虚拟机器人采摘路径避障规划[J] . 农业机械学报,2020,51(S2):1 − 10.
|
[13] |
杨海兰, 祁永强, 吴保磊, 等. 动态环境下基于忆阻强化学习的移动机器人路径规划[J] . 系统仿真学报,2023,35(7):1619 − 1633.
|