Citation: | NING Yangxue, PAN Haojun, WANG Guoqiang. Integrated cross-efficiency model based on directional distance function and information entropy[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 328-333. doi: 10.12299/jsues.23-0022 |
[1] |
CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J] . European Journal of Operational Research,1978,2(6):429 − 444. doi: 10.1016/0377-2217(78)90138-8
|
[2] |
魏权龄. 数据包络分析(DEA)[M]. 北京: 科学出版社, 2006.
|
[3] |
EMROUZNEJAD A, YANG G. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016[J] . Socio-Economic Planning Sciences,2018,61:4 − 8. doi: 10.1016/j.seps.2017.01.008
|
[4] |
SEXTON T R, SILKMAN R H, HOGAN A J. Data envelopment analysis: Critique and extensions[J] . New Directions for Program Evaluation,1986(32):73 − 105.
|
[5] |
DOYLE J, GREEN R. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses[J] . Journal of the Operational Research Society,1994,45(5):567 − 578. doi: 10.1057/jors.1994.84
|
[6] |
WANG Y, CHIN K. A neutral DEA model for cross-efficiency evaluation and its extension[J] . Expert Systems with Applications,2010,37(5):3666 − 3675. doi: 10.1016/j.eswa.2009.10.024
|
[7] |
PASTOR J T. Translation invariance in data envelopment analysis: A generalization[J] . Annals of Operations Research,1996,66(2):91 − 102. doi: 10.1007/BF02187295
|
[8] |
BANKER R D, CHARNES A, COOPER W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J] . Management Science,1984,30(9):1078 − 1092. doi: 10.1287/mnsc.30.9.1078
|
[9] |
PORTELA M S, THANASSOULIS E, SIMPSON G. Negative data in DEA: A directional distance approach applied to bank branches[J] . Journal of the Operational Research Society,2004,55(10):1111 − 1121. doi: 10.1057/palgrave.jors.2601768
|
[10] |
LIN R. Cross-efficiency evaluation capable of dealing with negative data: A directional distance function based approach[J] . Journal of the Operational Research Society,2020,71(3):505 − 516. doi: 10.1080/01605682.2019.1567652
|
[11] |
梁樑, 吴杰. 数据包络分析(DEA)的交叉效率研究进展与展望[J] . 中国科学技术大学学报,2013,43(11):941 − 947. doi: 10.3969/j.issn.0253-2778.2013.11.010
|
[12] |
WU J, SUN J, LIANG L. DEA cross-efficiency aggregation method based upon Shannon entropy[J] . International Journal of Production Research,2012,50(23):6726 − 6736. doi: 10.1080/00207543.2011.618150
|
[13] |
SONG L, LIU F. An improvement in DEA cross‐efficiency aggregation based on the Shannon entropy[J] . International Transactions in Operational Research,2018,25(2):705 − 714. doi: 10.1111/itor.12361
|
[14] |
钱振华, 成刚. 基于广义平均的方向距离函数效率测量方法[J] . 数学的实践与认识,2012,42(23):100 − 106. doi: 10.3969/j.issn.1000-0984.2012.23.012
|
[15] |
SHANNON C E. A mathematical theory of communication[J] . The Bell System Technical Journal,1948,27(3):379 − 423. doi: 10.1002/j.1538-7305.1948.tb01338.x
|
[16] |
LIN R, LIU Y. Super-efficiency based on the directional distance function in the presence of negative data[J] . Omega,2019,85:26 − 34. doi: 10.1016/j.omega.2018.05.009
|