Volume 38 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
NING Yangxue, PAN Haojun, WANG Guoqiang. Integrated cross-efficiency model based on directional distance function and information entropy[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 328-333. doi: 10.12299/jsues.23-0022
Citation: NING Yangxue, PAN Haojun, WANG Guoqiang. Integrated cross-efficiency model based on directional distance function and information entropy[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 328-333. doi: 10.12299/jsues.23-0022

Integrated cross-efficiency model based on directional distance function and information entropy

doi: 10.12299/jsues.23-0022
  • Received Date: 2023-02-12
    Available Online: 2024-11-14
  • Publish Date: 2024-09-30
  • Aiming at the problem that traditional cross-efficiency model cannot handle both input and output data containing negative numbers, an integrated cross-efficiency model based on directional distance function and information entropy was proposesed. First of all, the idea of direction distance function was used to deal with negative numbers. Secondly, the complete ranking of decision units was realized by combining cross efficiency. Then, with the help of the variation coefficient of information entropy, a set of public weights for cross-efficiency integration were obtained to avoid the weight deviation of the traditional model and retain the decision information in the evaluation process. Finally, the effectiveness and practicability of the proposed model were verified by a numerical example, and the research scope and application scenarios of the cross-efficiency model were extended.
  • loading
  • [1]
    CHARNES A, COOPER W W, RHODES E. Measuring the efficiency of decision making units[J] . European Journal of Operational Research,1978,2(6):429 − 444. doi: 10.1016/0377-2217(78)90138-8
    [2]
    魏权龄. 数据包络分析(DEA)[M]. 北京: 科学出版社, 2006.
    [3]
    EMROUZNEJAD A, YANG G. A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016[J] . Socio-Economic Planning Sciences,2018,61:4 − 8. doi: 10.1016/j.seps.2017.01.008
    [4]
    SEXTON T R, SILKMAN R H, HOGAN A J. Data envelopment analysis: Critique and extensions[J] . New Directions for Program Evaluation,1986(32):73 − 105.
    [5]
    DOYLE J, GREEN R. Efficiency and cross-efficiency in DEA: Derivations, meanings and uses[J] . Journal of the Operational Research Society,1994,45(5):567 − 578. doi: 10.1057/jors.1994.84
    [6]
    WANG Y, CHIN K. A neutral DEA model for cross-efficiency evaluation and its extension[J] . Expert Systems with Applications,2010,37(5):3666 − 3675. doi: 10.1016/j.eswa.2009.10.024
    [7]
    PASTOR J T. Translation invariance in data envelopment analysis: A generalization[J] . Annals of Operations Research,1996,66(2):91 − 102. doi: 10.1007/BF02187295
    [8]
    BANKER R D, CHARNES A, COOPER W W. Some models for estimating technical and scale inefficiencies in data envelopment analysis[J] . Management Science,1984,30(9):1078 − 1092. doi: 10.1287/mnsc.30.9.1078
    [9]
    PORTELA M S, THANASSOULIS E, SIMPSON G. Negative data in DEA: A directional distance approach applied to bank branches[J] . Journal of the Operational Research Society,2004,55(10):1111 − 1121. doi: 10.1057/palgrave.jors.2601768
    [10]
    LIN R. Cross-efficiency evaluation capable of dealing with negative data: A directional distance function based approach[J] . Journal of the Operational Research Society,2020,71(3):505 − 516. doi: 10.1080/01605682.2019.1567652
    [11]
    梁樑, 吴杰. 数据包络分析(DEA)的交叉效率研究进展与展望[J] . 中国科学技术大学学报,2013,43(11):941 − 947. doi: 10.3969/j.issn.0253-2778.2013.11.010
    [12]
    WU J, SUN J, LIANG L. DEA cross-efficiency aggregation method based upon Shannon entropy[J] . International Journal of Production Research,2012,50(23):6726 − 6736. doi: 10.1080/00207543.2011.618150
    [13]
    SONG L, LIU F. An improvement in DEA cross‐efficiency aggregation based on the Shannon entropy[J] . International Transactions in Operational Research,2018,25(2):705 − 714. doi: 10.1111/itor.12361
    [14]
    钱振华, 成刚. 基于广义平均的方向距离函数效率测量方法[J] . 数学的实践与认识,2012,42(23):100 − 106. doi: 10.3969/j.issn.1000-0984.2012.23.012
    [15]
    SHANNON C E. A mathematical theory of communication[J] . The Bell System Technical Journal,1948,27(3):379 − 423. doi: 10.1002/j.1538-7305.1948.tb01338.x
    [16]
    LIN R, LIU Y. Super-efficiency based on the directional distance function in the presence of negative data[J] . Omega,2019,85:26 − 34. doi: 10.1016/j.omega.2018.05.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (256) PDF downloads(211) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return