Citation: | YANG Zhifan, LI Haibo. Improved weed identification algorithm based on YOLOv5-SPD[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 75-82. doi: 10.12299/jsues.23-0037 |
[1] |
HAMUDA E, MC GINLEY B, GLAVIN M, et al. Automatic crop detection under field conditions using the HSV colour space and morphological operations[J] . Computers and Electronics in Agriculture,2017,133:97 − 107. doi: 10.1016/j.compag.2016.11.021
|
[2] |
SHARPE S M, SCHUMANN A W, BOYD N S. Goosegrass detection in strawberry and tomato using a convolutional neural network[J] . Scientific Reports,2020,10(1):9548. doi: 10.1038/s41598-020-66505-9
|
[3] |
CHO S I, LEE D S, JEONG J Y. AE-automation and emerging technologies: Weed-plant discrimination by machine vision and artificial neural network[J] . Biosystems Engineering,2002,83(3):275 − 280. doi: 10.1006/bioe.2002.0117
|
[4] |
姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J] . 农业机械学报,2020,51(6):220 − 228, 247.
|
[5] |
孟庆宽, 张漫, 杨晓霞, 等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J] . 农业机械学报,2020,51(12):238 − 245. doi: 10.6041/j.issn.1000-1298.2020.12.026
|
[6] |
东辉, 陈鑫凯, 孙浩, 等. 基于改进YOLOv4和图像处理的蔬菜田杂草检测[J] . 图学学报,2022,43(4):559 − 569.
|
[7] |
JIAO L, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J] . IEEE Access,2019,7:128837 − 128868. doi: 10.1109/ACCESS.2019.2939201
|
[8] |
SHIH K H, CHIU C T, LIN J A, et al. Real-time object detection with reduced region proposal network via multi-feature concatenation[J] . IEEE Transactions on Neural Networks and Learning Systems,2019,31(6):2164 − 2173.
|
[9] |
HE K, GKIOXARI G, Dollár P, et al. Mask R-CNN[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,42(2):386 − 397.
|
[10] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779−788.
|
[11] |
WANG Y, WANG C, ZHANG H, et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J] . Remote Sensing,2019,11(5):531. doi: 10.3390/rs11050531
|
[12] |
DUAN K , BAI S , XIE L , et al. CenterNet: Keypoint Triplets for Object Detection[C]// Proceedings of International Conference on Computer Vision. Washington: IEEE Press, 2019: 6569−6578.
|
[13] |
SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Grenoble: Springer, 2022: 443−459.
|
[14] |
REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658−666.
|
[15] |
ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI conference on artificial intelligence. Glasgow: AAAI, 2020: 12993−13000.
|
[16] |
JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,42(8):2011 − 2023.
|