Volume 38 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LI Xiaobo, CAO Shuo, FENG Qiufeng, BAI Yannian, YANG Zhihao, ZHANG Hao. Capacitance status identification of subway vehicles based on optimized VMD and energy relative entropy[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 1-6. doi: 10.12299/jsues.23-0083
Citation: LI Xiaobo, CAO Shuo, FENG Qiufeng, BAI Yannian, YANG Zhihao, ZHANG Hao. Capacitance status identification of subway vehicles based on optimized VMD and energy relative entropy[J]. Journal of Shanghai University of Engineering Science, 2024, 38(1): 1-6. doi: 10.12299/jsues.23-0083

Capacitance status identification of subway vehicles based on optimized VMD and energy relative entropy

doi: 10.12299/jsues.23-0083
  • Received Date: 2023-04-06
  • Publish Date: 2024-02-01
  • Aiming at the problem that there is no obvious symptom of capacitance performance degradation on subway vehicles, a capacitance status identification method based on optimized variational mode decomposition (VMD) and energy relative entropy was proposed. By establishing a Matlab circuit model, the output voltage signals of the capacitance at normal status or different degradation conditions were extracted, then the characteristic samples were obtained by decomposition of optimized VMD. And the relative entropy analysis of the energy eigenvectors of the eigenmode components at the above status was carried out to obtain the identification threshold of capacitance degradation. In practical application, the relative entropy value of the energy of the circuit under test and the normal status was compared with the identification threshold to complete the capacitance status identification. The analysis result shows that this method can identify the capacitance status simply and effectively, and the accuracy is 93.3%.
  • loading
  • [1]
    雷登云, 段孝星, 王力纬, 等. BUCK电源模块输出电容ESR在线检测电路设计[J] . 电子产品可靠性与环境试验,2019,37(2):26 − 30.
    [2]
    孟金磊, 陈旭. 基于状态观测器的电解电容在线状态监测方法[J] . 电力电子技术,2018,52(8):59 − 62.
    [3]
    朱城昊, 王晗, 高少亭, 等. 风电变流器DC-Link电容器准在线状态监测方法[J] . 高电压技术,2023,49(1):373 − 382.
    [4]
    俞珊, 徐志望, 董纪清. 开关电源中电解电容寿命预测分析[J] . 电源学报,2016,14(6):87 − 92, 121.
    [5]
    沈茜, 任磊, 龚春英, 等. 一种基于系统辨识的Buck型变换器特征参数提取方法[J] . 中国电机工程学报,2016,36(20):5624 − 5631.
    [6]
    姜媛媛, 陈李, 魏念巍. 基于时域特征DC_DC电路软故障诊断[J] . 新余学院学报,2020,25(2):11 − 18.
    [7]
    陈李. 变工况Buck电路软故障特征提取方法研究 [D]. 淮南: 安徽理工大学 2020.
    [8]
    姜媛媛. 电力电子电路故障诊断及预测关键技术研究 [D]. 南京: 南京航空航天大学 2018.
    [9]
    吴小涛, 严世伦. 基于相关性的最优变分模态分解算法[J] . 黄冈师范学院学报,2019,39(3):6 − 10.
    [10]
    邓思成, 宋玉琴. 优化VMD在轴承故障诊断中的应用[J] . 科学技术创新,2019(6):16 − 18.
    [11]
    宋玉琴, 邓思成, 路彦刚. K值优化的VMD在轴承故障诊断中的应用[J] . 测控技术,2019,38(4):117 − 121.
    [12]
    陈剑, 夏康, 黄凯旋, 等. 基于VMD相对能量熵和自适应ARMA模型的轴承性能退化趋势动态预警[J] . 电子测量与仪器学报,2020,34(8):116 − 123.
    [13]
    徐艳春, 赵彩彩, 孙思涵, 等. 基于改进LMD和能量相对熵的主动配电网故障定位方法[J] . 中国电力,2021,54(11):133 − 143.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (266) PDF downloads(386) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return