Volume 38 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
PU Shibiao, ZENG Guohui, LIU Jin. Wind power prediction method based on IWOA-ELM[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 284-290. doi: 10.12299/jsues.23-0191
Citation: PU Shibiao, ZENG Guohui, LIU Jin. Wind power prediction method based on IWOA-ELM[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 284-290. doi: 10.12299/jsues.23-0191

Wind power prediction method based on IWOA-ELM

doi: 10.12299/jsues.23-0191
  • Received Date: 2023-09-05
    Available Online: 2024-11-14
  • Publish Date: 2024-09-30
  • In wind energy storage microgrids, accurately predicting the actual output power of wind farms in advance can effectively improve the stability of grid integration regulation. To address the low prediction accuracy of existing models for wind power characteristic parameters, a wind power characteristic parameter prediction method based on improved whale optimization algorithm of extreme learning machine (IWOA-ELM) was proposed. By optimizing the parameters of the extreme learning machine using an improved whale optimization algorithm, a IWOA-ELM wind power characteristic parameter prediction model based on time series was established to predict the characteristic parameters of future wind power. Model performance was evaluated using metrics such as root mean square error and mean absolute error. Experimental results show that the proposed prediction method has a root mean square error of 5.488% and a mean absolute error of 3.72% for wind speed prediction, and a root mean square error of 19.354% and a mean absolute error of 12.46% for wind direction prediction. The prediction accuracy is significantly higher than that of other wind power prediction models such as WOA-ELM, PSO-ELM, BP, and ELM.
  • loading
  • [1]
    吴慧军, 郭超雨, 苏承国, 等. 基于EEMD-GRU-MC的短期风功率组合预测方法[J] . 南方电网技术,2023,17(2):66 − 73.
    [2]
    杨雷, 张宝峰, 朱均超, 等. 基于PCA-PSO-LSSVM的温室大棚温度预测方法[J] . 传感器与微系统,2018,37(7):52 − 55.
    [3]
    程启明, 陈路, 程尹曼, 等. 基于EEMD和LS-SVM模型的风电功率短期预测方法[J] . 电力自动化设备,2018,38(5):27 − 35.
    [4]
    曹天行, 刘三明, 王致杰, 等. 基于集合经验模态和深浅层学习组合的风电场功率短期预测研究[J] . 电测与仪表,2018,55(13):84 − 88.
    [5]
    杨茂, 董骏城, 刘铁, 等. 两种基于自适应神经模糊推理系统的风功率预测方法[J] . 电测与仪表,2016,53(19):22 − 26.
    [6]
    张景杨, 王维庆, 王海云, 等. 基于CEEMDAN-SAFA-LSSVM的短期风功率预测[J] . 计算机仿真,2021,38(8):134 − 138.
    [7]
    胡健伟, 周玉良, 金菊良. BP神经网络洪水预报模型在洪水预报系统中的应用[J] . 水文,2015,35(1):20 − 25.
    [8]
    孔俊, 李士进, 朱跃龙. 集成极限学习机的中小河流洪水预报方法研究[J] . 水文,2018,38(1):67 − 72.
    [9]
    耿读艳, 赵杰, 王晨旭, 等. 基于归一化最小均方差联合集合经验模态分解的运动状态下心率提取算法研究[J] . 生物医学工程学杂志,2020,37(1):71 − 79.
    [10]
    袁冬芳, 曹富军, 李德荣. 主成分分析结合极限学习机的高炉炉温预测模型[J] . 内蒙古科技大学学报,2017,36(4):327 − 332.
    [11]
    刘栋, 魏霞, 王维庆, 等. 基于SSA-ELM的短期风电功率预测[J] . 智慧电力,2021,49(6):53 − 59, 123.
    [12]
    陈真, 马细霞, 张晓蕾. 基于PCA和AHP的小流域山洪灾害风险评价[J] . 水电能源科学,2018,36(11):56 − 59.
    [13]
    孟宪猛, 蔡翠翠. 基于改进鲸鱼优化算法的阵列单元失效校正[J] . 探测与控制学报,2020,42(6):72 − 76.
    [14]
    王珂珂, 牛东晓, 甄皓, 等. 基于WOA-ELM模型的中国碳排放预测研究[J] . 生态经济,2020,36(8):20 − 27.
    [15]
    韩永亮, 李胜, 杨宏伟, 等. 基于LMD-BA-ELM的边坡变形时序非线性预测模型研究[J] . 中国安全科学学报,2015,25(9):59 − 65.
    [16]
    董东林, 陈昱吟, 倪林根, 等. 基于WOA-ELM算法的矿井突水水源快速判别模型[J] . 煤炭学报,2021,46(3):984 − 993.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (9) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return