Volume 38 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
ZHAN Jiajie. Measurement and influencing factors study of spatial quality in urban waterfront areas along the Suzhou River in Shanghai supported by multi-source data[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 304-312, 327. doi: 10.12299/jsues.23-0193
Citation: ZHAN Jiajie. Measurement and influencing factors study of spatial quality in urban waterfront areas along the Suzhou River in Shanghai supported by multi-source data[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 304-312, 327. doi: 10.12299/jsues.23-0193

Measurement and influencing factors study of spatial quality in urban waterfront areas along the Suzhou River in Shanghai supported by multi-source data

doi: 10.12299/jsues.23-0193
  • Received Date: 2023-12-22
    Available Online: 2024-11-14
  • Publish Date: 2024-09-30
  • The spatial quality of urban waterfront areas is an important indicator of the level of urban development and construction. Traditional research on spatial quality has problems such as limited spatial scale, strong subjectivity, and single research perspective. Based on Open Street Map road data, Baidu Map street views, and Baidu Map point-of-interest (POI) data, combing with machine learning technology, the spatial quality of waterfront area along the Suzhou River in Shanghai was measured. MGWR2.2.1 software was used to establish a multi-scale geographically weighted regression model for influencing factors of spatial quality. The result shows that the western Putuo District, western Changning District, and the north bank of Suzhou River in Jingan District have lowspatial quality in the study area, which should be prioritized during optimization. The eastern part of the study area is suitable for improving spatial quality through measures such as planting trees, building pedestrian paths, and opening pedestrian streets, while the western part should focus on developing leisure and consumer industries such as catering, shopping, and entertainment, as well as conjunct them with existing park green space resources, more trees should be planted, pocket parks are also necessary. The study results can provide a reference for optimizing the spatial quality of the Suzhou River waterfront area.
  • loading
  • [1]
    苏婷, 刘玮辰, 吴巍, 等. 城市滨水区再开发的研究进展与展望[J] . 地理科学进展,2023,42(2):392 − 405. doi: 10.18306/dlkxjz.2023.02.015
    [2]
    林焰. 城市滨水开放空间景观的建设与保护[J] . 中国园林,2003(12):30 − 32. doi: 10.3969/j.issn.1000-6664.2003.12.008
    [3]
    曾旭东, 张振华. 基于区域生态优先的城市滨水景观规划设计: 以重庆嘉陵江草街滨江景观规划为例[J] . 中国园林,2010,26(8):49 − 53. doi: 10.3969/j.issn.1000-6664.2010.08.012
    [4]
    徐望朋, 卞晓俊. 城市滨水空间设计策略: 以上海嘉定远香湖地区为例[J] . 规划师,2014,30(S4):10 − 14.
    [5]
    江浩波, 宋孟坤, 肖扬. 滨水空间视觉景观舒适度评价研究: 以上海市“一江一河”为例[J] . 风景园林,2022,29(10):122 − 129.
    [6]
    魏鸿雁, 陶卓民, 潘坤友. 城市滨水区游憩空间与游憩活动的空间耦合特征及影响机制: 以南京秦淮河为例[J] . 长江流域资源与环境,2022,31(4):840 − 850.
    [7]
    张洁, 俞青青, 傅东示, 等. 基于多源数据的城市滨水空间活力研究: 以杭州西湖滨水区为例[J] . 浙江林业科技,2023,43(4):82 − 89. doi: 10.3969/j.issn.1001-3776.2023.04.011
    [8]
    李敏, 李建伟. 近年来国内城市滨水空间研究进展[J] . 云南地理环境研究,2006(2):86 − 90. doi: 10.3969/j.issn.1001-7852.2006.02.018
    [9]
    上海市人民政府. 上海市国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要[EB/OL]. (2021−01−27)[2023−06−06]. https://www.shanghai.gov.cn/nw12344/20210129/ced9958c16294feab926754394d9db91.html.
    [10]
    上海市人民政府新闻办. 市政府新闻发布会介绍《上海市“一江一河”发展“十四五”规划》相关情况[EB/OL]. (2021−08−21)[2023−06−06]. https://www.shanghai.gov.cn/nw12344/20210831/c543bb18cf454f01936e02499cf797cf.html.
    [11]
    YAO Y, LIANG Z T, YUAN Z H, et al. A human-machine adversarial scoring fram-ework for urban perception assessment using street-view images[J] . International Journal of Geographical Information Science,2019,33(12):2363 − 2384. doi: 10.1080/13658816.2019.1643024
    [12]
    刘智谦, 吕建军, 姚尧, 等. 基于街景图像的可解释性城市感知模型研究方法[J] . 地球信息科学学报,2022,24(10):2045 − 2057. doi: 10.12082/dqxxkx.2022.210712
    [13]
    芦原义信. 街道的美学(含续街道的美学)[M]. 尹培桐, 译. 武汉: 华中理工大学出版社, 1989: 29.
    [14]
    高力. 基于街景图片识别的城市街道空间品质变化研究[D]. 北京: 北方工业大学, 2021.
    [15]
    刘晨. 基于多源数据的街道空间步行适宜性评价方法优化研究[D]. 南京: 南京大学, 2020.
    [16]
    胡昂, 戴维维, 郭仲薇, 等. 城市生活型街道空间视觉品质的大规模测度[J] . 华侨大学学报(自然科学版),2021,42(4):483 − 493.
    [17]
    DUBEY A, NAIK N, PARIKH D, et al. Deep learning the city: Quantifying urban perception at a global scale[C]//Proceedings of European Conference on Computer Vision (ECCV). Cham: Springer, 2016: 196−212.
    [18]
    宋颖, 高明秀, 王佳凡, 等. 基于MGWR的滨海区土壤盐渍化分布空间预测及影响因素分析[EB/OL]. (2023−10−31)[2023−11−14]. https://link.cnki.net/doi/10.13227/j.hjkx.202307195
    [19]
    沈体雁, 于瀚辰, 周麟, 等. 北京市二手住宅价格影响机制: 基于多尺度地理加权回归模型(MGWR)的研究[J] . 经济地理,2020,40(3):75 − 83.
    [20]
    谢涤湘, 吴淑琪, 常江. 邻避设施空间分布特征及其与周边住宅价格的关系: 广州案例[J] . 地理科学进展,2023,42(1):42 − 52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article views (147) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return