Citation: | WEN Jian, DENG Shengxiang. Design of indoor thermal comfort system based on wireless sensor network[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 298-303. doi: 10.12299/jsues.23-0194 |
[1] |
许立. 公共建筑以能耗数据为导向的节能管理方法探究: 评《图说公共建筑能耗的数据挖掘与模型方法》[J] . 人民长江,2022,53(6):242.
|
[2] |
褚俊杰, 徐伟, 霍慧敏. 间接蒸发冷却空调在近零能耗公共建筑中的应用与实测[J] . 建筑科学,2021,37(10):9 − 15, 41.
|
[3] |
FRANCO S S, HENRIQUEZ J, OCHOA A, et al. Thermal analysis and development of PID control for electronic expansion device of vapor compression refrigeration systems[J] . Applied Thermal Engineering,2022,206:118130.
|
[4] |
LIANG Y C, MCKEOWN A, YU Z B, et al. Experimental study on a heat driven refrigeration system based on combined organic rankine and vapour compression cycles[J] . Energy Conversion and Management,2021,234(1):113953. doi: 10.1016/j.enconman.2021.113953
|
[5] |
庄露萍, 陈曦, 管晓宏. 采暖通风与空调系统中冷却塔传热效率的回归模型[J] . 控制与决策,2018,33(10):1801 − 1806. doi: 10.13195/j.kzyjc.2017.0643
|
[6] |
YANG B , WU M C, LI Z , et al. Thermal comfort and energy savings of personal comfort systems in low temperature office: A field study[J] . Energy and Buildings,2022,270:1 − 15. doi: 10.1016/j.enbuild.2022.112276
|
[7] |
GUPTA S K, KUMAR S, TYAGI S. Energy efficient and effective node deployment for wireless sensor network[J] . International Journal of Communication Systems,2022,35(1):1 − 17. doi: 10.1002/dac.5139
|
[8] |
LUOMALA J, HAKALA I. Adaptive range-based localization algorithm based on trilateration and reference node selection for outdoor wireless sensor networks[J] . Computer Networks,2022,210(8):108865. doi: 10.1016/j.comnet.2022.108865
|
[9] |
ZHOU Y D, SU Y, XU Z B, et al. A hybrid physics-based/data-driven model for personalized dynamic thermal comfort in ordinary office environment[J] . Energy and Buildings,2021,238:110790. doi: 10.1016/j.enbuild.2021.110790
|
[10] |
CHAI J L, FAN J T. Advanced thermal regulating materials and systems for energy saving and thermal comfort in buildings[J] . Materials Today Energy,2022,24:100925.
|
[11] |
PISELLO A L, PIGLIAUTILE I, ANDARGIE M, et al. Test rooms to study human comfort in buildings: A review of controlled experiments and facilities[J] . Renewable and Sustainable Energy Reviews,2021,149:111359. doi: 10.1016/j.rser.2021.111359
|
[12] |
RUIVO C R, Da SILVA M G, BRODAY E E. Study on thermal comfort by using an atmospheric pressure dependent predicted mean vote index[J] . Building and Environment,2021,206:108370. doi: 10.1016/j.buildenv.2021.108370
|
[13] |
KHATOON S, KIM M H. Thermal comfort in the passenger compartment using a 3-D numerical analysis and comparison with fanger's comfort models[J] . Energies,2020,13(3):1 − 15. doi: 10.3390/en13030690
|
[14] |
MALIK A, BONGERS C, MCBAIN B, et al. The potential for indoor fans to change air conditioning use while maintaining human thermal comfort during hot weather: an analysis of energy demand and associated greenhouse gas emissions[J] . Lancet Planet Health,2022,6(4):E301 − E309. doi: 10.1016/S2542-5196(22)00042-0
|
[15] |
HAN H, LEE J, KIM J, et al. Thermal comfort control based on a simplified predicted mean vote index[J] . Energy Procedia,2014,61:970 − 974. doi: 10.1016/j.egypro.2014.11.1006
|
[16] |
FAGUNDES M A R, MENDONA-TINTI I, IESCHECK A L, et al. An open-source low-cost sensor for SNR-based GNSS reflectometry: Design and long-term validation towards sea-level altimetry[J] . GPS Solutions,2021,25(73). doi: 10.1007/s10291-021-01087-1
|
[17] |
CHANG F, LI C D. An extended looped functional approach for stability analysis of T-S fuzzy impulsive control systems[J] . International Journal of Control, Automation and Systems,2023,21(7):2409 − 2421. doi: 10.1007/s12555-022-0317-z
|
[18] |
LANKESHWARA G, SHARMA R, YAN R F, et al. A hierarchical control scheme for residential air-conditioning loads to provide real-time market services under uncertainties[J] . Energy,2022,250(C):123796. doi: 10.1016/j.energy.2022.123796
|