Citation: | WANG Jiajun, ZHAO Shouwei. BiLSTM_Attention text classification method based on pre-trained model ERNIE3.0[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 113-118. doi: 10.12299/jsues.23-0206 |
[1] |
TONG S, KOLLER D. Support vector machine active learning with applications to text classification[J] . Journal of Machine Learning Research,2001(2):45 − 66.
|
[2] |
TAN S. An effective refinement strategy for KNN text classifier[J] . Expert Systems with Applications,2006,30(2):290 − 298. doi: 10.1016/j.eswa.2005.07.019
|
[3] |
李航. 统计学习方法[M] . 北京: 清华大学出版社, 2012: 47 − 53.
|
[4] |
JONES K S. A statistical interpretation of term specificity and its application in retrieval[J] . Journal of Documentation,2004,60(5):493 − 502. doi: 10.1108/00220410410560573
|
[5] |
PENNINGTON J , SOCHER R , MANNING C . Glove: global vectors for word representation[C] //Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics, 2014: 1532–1543.
|
[6] |
JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[EB/OL] . (2016-08-09)[2023-05-16] . https://doi.org/10.48550/arXiv.1607.01759.
|
[7] |
KIM Y . Convolutional neural networks for sentence classification[EB/OL] . (2014−09−03)[2023−05−16] . https://doi.org/10.48550/arXiv.1408.5882.
|
[8] |
GRAVES A, SCHMIDHUBER J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J] . Neural Networks,2005,18(5):602 − 610.
|
[9] |
和志强, 杨建, 罗长玲. 基于BiLSTM神经网络的特征融合短文本分类算法[J] . 智能计算机与应用,2019,9(2):21 − 27. doi: 10.3969/j.issn.2095-2163.2019.02.005
|
[10] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. , 2017: 6000 – 6010.
|
[11] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C] //Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis: Association for Computational Linguistics, 2019: 4171 – 4186.
|
[12] |
张洋, 胡燕. 基于多通道深度学习网络的混合语言短文本情感分类方法[J] . 计算机应用研究,2021,38(1):69 − 74.
|
[13] |
张军, 邱龙龙. 一种基于BERT和池化操作的文本分类模型[J] . 计算机与现代化,2022(6):1 − 7. doi: 10.3969/j.issn.1006-2475.2022.06.001
|
[14] |
SUN Y, WANG S, FENG S, et al. Ernie 3.0: large-scale knowledge enhanced pre-training for language understanding and generation[EB/OL] . (2021−07−15)[2023−05−16] . https://doi.org/10.48550/arXiv.2107.02137.
|
[15] |
张欣, 翟正利, 姚路遥. 基于CNN和LSTM混合模型的中文新闻文本分类[J] . 计算机与数字工程,2023,51(7):1540 − 1543, 1573. doi: 10.3969/j.issn.1672-9722.2023.07.018
|
[16] |
杨兴锐, 赵寿为, 张如学, 等. 结合自注意力和残差的BiLSTM_CNN文本分类模型[J] . 计算机工程与应用,2022,58(3):172 − 180. doi: 10.3778/j.issn.1002-8331.2104-0258
|
[17] |
张小为, 邵剑飞. 基于改进的BERT-CNN模型的新闻文本分类研究[J] . 电视技术,2021,45(7):146 − 150.
|