Volume 38 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
GE Qixing, ZHANG Wei, XIE Guiliang, HU Zhi. Offline reinforcement learning dynamic obstacles avoidance navigation algorithm[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 313-320. doi: 10.12299/jsues.23-0227
Citation: GE Qixing, ZHANG Wei, XIE Guiliang, HU Zhi. Offline reinforcement learning dynamic obstacles avoidance navigation algorithm[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 313-320. doi: 10.12299/jsues.23-0227

Offline reinforcement learning dynamic obstacles avoidance navigation algorithm

doi: 10.12299/jsues.23-0227
  • Received Date: 2023-11-10
    Available Online: 2024-11-14
  • Publish Date: 2024-09-30
  • Real-time sampling and updating of data to optimize obstacle avoidance strategies for unmanned aerial vehicle (UAV) is an urgent issue in applying deep reinforcement learning (DRL) to collision prevention. In response to this problem, a dynamic obstacle avoidance navigation algorithm based on offline DRL was proposed. The combination of an offline DRL algorithm and velocity obstacle (VO) algorithm was introduced to address the issue of the high real-time interaction data required by online DRL algorithms. Performance enhancement of the offline DRL algorithm was achieved by imposing constraints on policy updates. A reward function based on VO was developed, which could enable the UAV to consider both time consumption and the shortest path while avoiding dynamic obstacles. Simulation verification in a three-dimensional obstacle navigation environment show that this method can surpass online deep reinforcement learning obstacle avoidance algorithms in terms of path length, flight time, and obstacle avoidance success rate. It will effectively address the problem of DRL requiring continuous input of online data for efficient policy updates
  • loading
  • [1]
    NEX F, REMONDINO F. UAV for 3D mapping applications: a review[J] . Applied Geomatics,2014,6(1):1 − 15. doi: 10.1007/s12518-013-0120-x
    [2]
    RADOGLOU-GRAMMATIKIS P, SARIGIANNIDISP, LAGKAS T, et al. A compilation of UAV applications for precision agriculture[J] . Computer Networks,2020,172:107148. doi: 10.1016/j.comnet.2020.107148
    [3]
    ALZAHRANI B, OUBBATI O S, BARNAWI A, et al. UAV assistance paradigm: State-of-the-art in applications and challenges[J] . Journal of Network and Computer Applications,2020,166:102706. doi: 10.1016/j.jnca.2020.102706
    [4]
    多南讯, 吕强, 林辉灿, 等. 迈进高维连续空间: 深度强化学习在机器人领域中的应用[J] . 机器人,2019,41(2):276 − 288.
    [5]
    王怿, 祝小平, 周洲, 等. 3维动态环境下的无人机路径跟踪算法[J] . 机器人,2014,36(1):83 − 91.
    [6]
    陈海, 何开锋, 钱炜祺. 多无人机协同覆盖路径规划[J] . 航空学报,2016,37(3):928 − 935.
    [7]
    贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J] . 航空学报,2020,41(S1):4 − 14.
    [8]
    赵晓, 王铮, 黄程侃, 等. 基于改进A算法的移动机器人路径规划[J] . 机器人,2018,40(6):903 − 910.
    [9]
    徐飞. 基于改进人工势场法的机器人避障及路径规划研究[J] . 计算机科学,2016,43(12):293 − 296. doi: 10.11896/j.issn.1002-137X.2016.12.054
    [10]
    GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C] //Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao: IEEE, 2014: 2997 − 3004.
    [11]
    YANG H, QI J, MIAO Y, et al. A new robot navigation algorithm based on a double-layer ant algorithm and trajectory optimization[J] . IEEE Transactions on Industrial Electronics,2018,66(11):8557 − 8566.
    [12]
    FOX D, BURGARD W, THRUN S. The dynamic window approach to collision avoidance[J] . IEEE Robotics & Automation Magazine,1997,4(1):23 − 33.
    [13]
    CHEN Y F, LIU M, EVERETT M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning[C] //Proceedings of 2017 IEEE international conference on robotics and automation (ICRA). Singapore: IEEE, 2017: 285 − 292
    [14]
    EVERETT M, CHEN Y F, HOW J P. Motion planning among dynamic, decision-making agents with deep reinforcement learning[C] //Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 3052 − 3059.
    [15]
    FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J] . The International Journal of Robotics Research,1998,17(7):760 − 772. doi: 10.1177/027836499801700706
    [16]
    VAN DEN BERG J, LIN M, MANOCHA D. Reciprocal velocity obstacles for real-time multi-agent navigation[C] //Proceedings of 2008 IEEE international conference on robotics and automation. Pasadena: IEEE, 2008: 1928 − 1935.
    [17]
    ALONSO-MORA J, BREITENMOSER A, RUFLI M, et al. Optimal reciprocal collision avoidance for multiple non-holonomic robots[M] . Berlin: Springer, 2013: 203 − 216.
    [18]
    HAN R, CHEN S, WANG S, et al. Reinforcement learned distributed multi-robot navigation with reciprocal velocity obstacle shaped rewards[J] . IEEE Robotics and Automation Letters,2022,7(3):5896 − 5903. doi: 10.1109/LRA.2022.3161699
    [19]
    SUTTON R S, BARTO A G. Reinforcement learning: An introduction[M] . London: MIT press, 2018.
    [20]
    SCHULMAN J, WOLSKI F, DHARIWAL P, et al. Proximal policy optimization algorithms[EB/OL] . (2017−08−28)[2023−03−13] . https://arxiv.org/pdf/1707.06347.
    [21]
    FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[EB/OL] . (2018−10−22)[2023−05−11] . https://arxiv.org/pdf/1802.09477.
    [22]
    FUJIMOTO S, MEGER D, PRECUP D. Off-policy deep reinforcement learning without exploration[EB/OL] . (2019−01−29)[2023−07−03] . https://www.researchgate.net/publication/329525481.
    [23]
    KUMAR A, FU J, SOH M, et al. Stabilizing off-policy Q-learning via bootstrapping error reduction[C] //Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2019.
    [24]
    MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J] . Nature,2015,518:529 − 533. doi: 10.1038/nature14236
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return