Volume 38 Issue 3
Sep.  2024
Turn off MathJax
Article Contents
YU Yanqiao, LI Sijie, LIU Zhigang. Comparison of railway passenger flow forecast methods based on ARIMA and LSTM[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 278-283. doi: 10.12299/jsues.23-0236
Citation: YU Yanqiao, LI Sijie, LIU Zhigang. Comparison of railway passenger flow forecast methods based on ARIMA and LSTM[J]. Journal of Shanghai University of Engineering Science, 2024, 38(3): 278-283. doi: 10.12299/jsues.23-0236

Comparison of railway passenger flow forecast methods based on ARIMA and LSTM

doi: 10.12299/jsues.23-0236
  • Received Date: 2023-11-24
    Available Online: 2024-11-14
  • Publish Date: 2024-09-30
  • Accurate passenger flow forcast is the basis of the optimization of passenger transportation organization and an effective way to improve operational safety and transportation efficiency. Taking the annual passenger flow data of Jiangmen East Railway Station as research object, and the ARIMA time series model and the LSTM neural network model were constructed respectively. From the perspectives of forecast accuracy, calculation speed, error index evaluation, and model adaptability, the differences in passenger flow forecast results of two forecast models were analyzed. The results show that the LSTM model has better forecast accuracy and fitting accuracy, and the ARIMA model has faster calculation speed. This study result can provide significant practical implications for the selection of passenger flow forecast methods.
  • loading
  • [1]
    李洁, 彭其渊, 文超. 基于LSTM深度神经网络的高速铁路短期客流预测研究[J] . 系统工程理论与实践,2021,41(10):2669 − 2682.
    [2]
    刘星委. 基于ARIMA与长短时记忆神经网络的高速公路交通流预测及比较的研究[D] . 成都: 西南交通大学, 2018.
    [3]
    李德奎, 杜书波, 张鹏. 基于ARIMA和LSTM的城市轨道交通延时客流预测方法比较[J] . 青岛理工大学学报,2021,42(4):135 − 142.
    [4]
    徐映梅, 陈尧. 季节ARIMA模型与LSTM神经网络预测的比较[J] . 统计与决策,2021,37(2):46 − 50.
    [5]
    于洋. 考虑拆船补贴政策的干散货船队更新策略研究[D] . 大连: 大连海事大学, 2017.
    [6]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J] . Neural Computation,1997,9(8):1735 − 1780 doi: 10.1162/neco.1997.9.8.1735
    [7]
    贺菁伟, 杨东谕. 长短期记忆模型在低频数据预测中的应用: 以新冠肺炎疫情对北京市社会消费品零售总额的影响测算为例[J] . 统计理论与实践,2021(1):24 − 28.
    [8]
    邓于佳. 基于百度指数的股票波动数据分析及预测[D] . 贵阳: 贵州财经大学, 2021.
    [9]
    潘念然. 基于ARIMA和LSTM的城市轨道交通客流量预测[J] . 科学技术创新,2022(8):165 − 168.
    [10]
    杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J] . 计算机应用,2018,38(S2):1 − 6, 26.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (181) PDF downloads(322) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return