Volume 39 Issue 1
May  2025
Turn off MathJax
Article Contents
ZHUANG Xuyao, WEI Dan, LIANG Danyang. Regional attention selection and feature reinforcement for occluded person re-identification[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 58-64. doi: 10.12299/jsues.23-0260
Citation: ZHUANG Xuyao, WEI Dan, LIANG Danyang. Regional attention selection and feature reinforcement for occluded person re-identification[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 58-64. doi: 10.12299/jsues.23-0260

Regional attention selection and feature reinforcement for occluded person re-identification

doi: 10.12299/jsues.23-0260
  • Received Date: 2023-12-15
  • Publish Date: 2025-05-19
  • Occluded person re-identification (ReID) in practical applications faces the main challenges of incomplete or noisy pedestrian features during the extraction and matching processes, which necessitates models with higher stability. Deep learning techniques were employed to construct the ReID model, which incorporates two modules: region attention selection and feature enhancement. The former adaptively selects regions of interest from the original image, while the latter distinguishes human features and applies weighting during the matching process. The ablation analysis demonstrates that these two modules are embeddable and beneficial to occluded pedestrian re-identification task. It can achieve Rank-1 accuracy rates of 55.9% and 79.1% on the Occluded-Duke and Occluded-ReID datasets, respectively.
  • loading
  • [1]
    董亚超, 刘宏哲, 包俊. 基于深度学习的行人重识别技术的研究进展[C] //中国计算机用户协会网络应用分会. 中国计算机用户协会网络应用分会2020年第二十四届网络新技术与应用年会论文集. 北京:北京联合大学北京市信息服务工程重点实验室, 2020: 5. DOI: 10.26914/c.cnkihy.2020.031794.
    [2]
    CAI H, WANG Z, CHENG J. Multi-scale body-part mask guided attention for person re-identification[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019.
    [3]
    ZHANG Z, LAN C, ZENG W, et al. Densely semantically aligned person re-identification[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE/CVF, 2019: 667 − 676.
    [4]
    JIIN X, LAN C L, ZENG W J, et al. Semantics-aligned representation learning for person re-identification[EB/OL] . (2020-03-18)[2023-04-12] . https://doi.org/10.48550/arXiv.1905.13143.
    [5]
    HE L, LIAO X, LIU W, et al. Fastreid: A pytorch toolbox for general instance re-identification[C] //Proceedings of the 31st ACM International Conference on Multimedia. Ottawa: ACM, 2023: 9664 − 9667.
    [6]
    陈琳. 行人重识别关键算法研究[D] . 上海:上海交通大学, 2021.
    [7]
    霍东东, 杜海顺. 基于通道重组和注意力机制的跨模态行人重识别[J] . Laser & Optoelectronics Progress,2023,60(14):1410007 − 1410012.
    [8]
    LUO H, JIANG W, FAN X, et al. Stnreid: deep convolutional networks with pairwise spatial transformer networks for partial person re-identification[J] . IEEE Transactions on Multimedia,2020,22(11):2905 − 2913. doi: 10.1109/TMM.2020.2965491
    [9]
    KORTYLEWSKI A, HE J, LIU Q, et al. Compositional convolutional neural networks: A deep architecture with innate robustness to partial occlusion[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE/CVF, 2020: 8940 − 8949.
    [10]
    郑泉石, 金城. 基于自适应预测的2D人体姿态估计[J] . 计算机科学,2023,50(S2):162 − 168.
    [11]
    李昌华, 刘艺, 李智杰. 用于非精确图匹配的改进注意图卷积网络[J] . 小型微型计算机系统,2021,42(1):41 − 45.
    [12]
    MIAO J, WU Y, LIU P, et al. Pose-guided feature alignment for occluded person re-identification[C] //Proceedings of the IEEE/CVF international Conference on Computer Vision. Seoul: IEEE/CVF, 2019: 542 − 551.
    [13]
    SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C] //Proceedings of the European conference on computer vision (ECCV). Munich: Springer, 2018: 480 − 496.
    [14]
    WANG G, YANG S, LIU H, et al. High-order information matters: learning relation and topology for occluded person re-identification[C] //Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. Seoul: IEEE/CVF, 2020: 6449 − 6458.
    [15]
    ZANFIR A, SMINCHISESCU C. Deep learning of graph matching[C] //Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2684 − 2693.
    [16]
    ZHUO J, CHEN Z, LAI J, et al. Occluded person re-identification[C] //2018 IEEE International Conference on Multimedia and Expo (ICME). San Diego: IEEE, 2018: 1 − 6.
    [17]
    SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618 − 626.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (4) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return