Citation: | ZHUANG Xuyao, WEI Dan, LIANG Danyang. Regional attention selection and feature reinforcement for occluded person re-identification[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 58-64. doi: 10.12299/jsues.23-0260 |
[1] |
董亚超, 刘宏哲, 包俊. 基于深度学习的行人重识别技术的研究进展[C] //中国计算机用户协会网络应用分会. 中国计算机用户协会网络应用分会2020年第二十四届网络新技术与应用年会论文集. 北京:北京联合大学北京市信息服务工程重点实验室, 2020: 5. DOI: 10.26914/c.cnkihy.2020.031794.
|
[2] |
CAI H, WANG Z, CHENG J. Multi-scale body-part mask guided attention for person re-identification[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019.
|
[3] |
ZHANG Z, LAN C, ZENG W, et al. Densely semantically aligned person re-identification[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE/CVF, 2019: 667 − 676.
|
[4] |
JIIN X, LAN C L, ZENG W J, et al. Semantics-aligned representation learning for person re-identification[EB/OL] . (2020-03-18)[2023-04-12] . https://doi.org/10.48550/arXiv.1905.13143.
|
[5] |
HE L, LIAO X, LIU W, et al. Fastreid: A pytorch toolbox for general instance re-identification[C] //Proceedings of the 31st ACM International Conference on Multimedia. Ottawa: ACM, 2023: 9664 − 9667.
|
[6] |
陈琳. 行人重识别关键算法研究[D] . 上海:上海交通大学, 2021.
|
[7] |
霍东东, 杜海顺. 基于通道重组和注意力机制的跨模态行人重识别[J] . Laser & Optoelectronics Progress,2023,60(14):1410007 − 1410012.
|
[8] |
LUO H, JIANG W, FAN X, et al. Stnreid: deep convolutional networks with pairwise spatial transformer networks for partial person re-identification[J] . IEEE Transactions on Multimedia,2020,22(11):2905 − 2913. doi: 10.1109/TMM.2020.2965491
|
[9] |
KORTYLEWSKI A, HE J, LIU Q, et al. Compositional convolutional neural networks: A deep architecture with innate robustness to partial occlusion[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE/CVF, 2020: 8940 − 8949.
|
[10] |
郑泉石, 金城. 基于自适应预测的2D人体姿态估计[J] . 计算机科学,2023,50(S2):162 − 168.
|
[11] |
李昌华, 刘艺, 李智杰. 用于非精确图匹配的改进注意图卷积网络[J] . 小型微型计算机系统,2021,42(1):41 − 45.
|
[12] |
MIAO J, WU Y, LIU P, et al. Pose-guided feature alignment for occluded person re-identification[C] //Proceedings of the IEEE/CVF international Conference on Computer Vision. Seoul: IEEE/CVF, 2019: 542 − 551.
|
[13] |
SUN Y, ZHENG L, YANG Y, et al. Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline)[C] //Proceedings of the European conference on computer vision (ECCV). Munich: Springer, 2018: 480 − 496.
|
[14] |
WANG G, YANG S, LIU H, et al. High-order information matters: learning relation and topology for occluded person re-identification[C] //Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition. Seoul: IEEE/CVF, 2020: 6449 − 6458.
|
[15] |
ZANFIR A, SMINCHISESCU C. Deep learning of graph matching[C] //Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2684 − 2693.
|
[16] |
ZHUO J, CHEN Z, LAI J, et al. Occluded person re-identification[C] //2018 IEEE International Conference on Multimedia and Expo (ICME). San Diego: IEEE, 2018: 1 − 6.
|
[17] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-cam: visual explanations from deep networks via gradient-based localization[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618 − 626.
|