Volume 39 Issue 1
May  2025
Turn off MathJax
Article Contents
YANG Chen, ZHENG Shubin, PENG Lele, CHEN Xieqi. Feature extraction method of vibration energy of rail vehicle running gear based on CVMD and FastICA[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 52-57. doi: 10.12299/jsues.23-0263
Citation: YANG Chen, ZHENG Shubin, PENG Lele, CHEN Xieqi. Feature extraction method of vibration energy of rail vehicle running gear based on CVMD and FastICA[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 52-57. doi: 10.12299/jsues.23-0263

Feature extraction method of vibration energy of rail vehicle running gear based on CVMD and FastICA

doi: 10.12299/jsues.23-0263
  • Received Date: 2023-12-19
  • Publish Date: 2025-05-19
  • To address the processing of nonlinear signals under interference, a vibration energy and feature extraction method integrating correlation coefficient-based variational modal decomposition (CVMD) and fast independent component analysis (FastICA) was proposed, which effectively handles both stationary and non-stationary signals. Through simulations and field test analyses of running gear vibration, it is verified that the main energy distribution of rail vehicle running gear is distributed within 50~120 Hz, and the key characteristic frequencies are identified as 75 and 100 Hz. The finding provide a theoretical basis for vibration energy recovery and feature extraction in the actual engineering applications of metro trains.
  • loading
  • [1]
    贾天丽. 轨道列车走行部滚动轴承故障诊断研究[D] . 北京: 北京交通大学, 2011.
    [2]
    胡晓依, 孙丽霞. 轨道车辆走行部一系垂向阻尼元件故障诊断[J] . 振动、测试与诊断,2013,33(S2):148 − 151, 225 − 226.
    [3]
    李熙. 城市轨道交通车辆走行部安全评估方法研究[D] . 北京: 北京交通大学, 2011.
    [4]
    PATEL S, PATEL S. Research progress on bearing fault diagnosis with signal processing methods for rolling element bearings[J] . Noise & Vibration Worldwide,2024,55(12):96 − 112.
    [5]
    LI Y J, WANG J X, FENG D J, et al. Bearing fault diagnosis method based on maximum noise ratio kurtosis product deconvolution with noise conditions[J] . Measurement, 2023, 221: 113542.
    [6]
    王奉涛, 柳晨曦, 张涛, 等. 基于k值优化VMD的滚动轴承故障诊断方法[J] . 振动、测试与诊断,2018,38(3):540 − 547.
    [7]
    HUANG N E, SHEN Z, LONG S R, et al. A new view of nonlinear water waves: the hilbert spectrum1[J] . Annual Review of Fluid Mechanics,1999,31(1):417 − 457. doi: 10.1146/annurev.fluid.31.1.417
    [8]
    郑近德, 程军圣, 杨宇. 改进的EEMD算法及其应用研究[J] . 振动与冲击,2013,32(21):21 − 26, 46. doi: 10.3969/j.issn.1000-3835.2013.21.004
    [9]
    MIAO Y H, ZHANG B W, LIN J, et al. A review on the application of blind deconvolution in machinery fault diagnosis[J] . Mechanical Systems and Signal Processing, 2022, 163: 108202.
    [10]
    宋玉琴, 邓思成, 路彦刚. K值优化的VMD在轴承故障诊断中的应用[J] . 测控技术,2019,38(4):117 − 121.
    [11]
    陈祥龙, 冯辅周, 张兵志, 等. 基于平方包络谱相关峭度的最优共振解调诊断滚动轴承故障[J] . 机械工程学报,2018,54(21):90 − 100.
    [12]
    代士超, 郭瑜, 伍星, 等. 基于子频带谱峭度平均的快速谱峭度图算法改进[J] . 振动与冲击,2015,34(7):98 − 102, 108.
    [13]
    王建雄, 张立民, 钟兆根. 基于FastICA算法的盲源分离[J] . 计算机技术与发展,2011,21(12):93 − 96. doi: 10.3969/j.issn.1673-629X.2011.12.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (39) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return