Citation: | JIANG Likai, WANG Guozhong, ZHAO Haiwu. High-quality dynamic real-time rendering method based on conditional generative adversarial networks[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 451-457. doi: 10.12299/jsues.24-0015 |
[1] |
GOODFELLOW I, et al. Generative adversarial networks[J] . Communications of the ACM,2020,63(11):139 − 144. doi: 10.1145/3422622
|
[2] |
VASILAKIS A A, VARDIS K, PAPAIOANNOU G. A survey of multifragment rendering[J] . Computer Graphics Forum, 2020, 39(2): 623−642. DOI: 10.1111/cgf.14019.
|
[3] |
TAN P. Phong reflectance model[C] //IKEUCHI K. Computer vision. Boston: Springer, 2020: 1−3.
|
[4] |
WANG Z J. Implementation of shading techniques based on OpenGL[J] . Applied Mechanics and Materials,2014,577:1038 − 1042. doi: 10.4028/www.scientific.net/AMM.577.1038
|
[5] |
LAURITZEN A. Deferred rendering for current and future rendering pipelines[EB/OL] . https://software.intel.com/en-us/articles/deferred-rendering-for-current-and-future-rendering-pipelines.
|
[6] |
BEUG A P. Screen space reflection techniques[D] . Regina: Faculty of Graduate Studies and Research, University of Regina, 2020.
|
[7] |
DONG Y Z, PENG C. Multi-GPU multi-display rendering of extremely large 3D environments[J] . The Visual Computer,2023,39(12):6473 − 6489. doi: 10.1007/s00371-022-02740-7
|
[8] |
DUTRÉ P, BALA K, BEKAERT P, et al. Advanced global illumination[M] . Boca Raton: CRC Press, 2018.
|
[9] |
MÜLLER T, ROUSSELLE F, NOVÁK J, et al. Real-time neural radiance caching for path tracing[J] . ACM Transactions on Graphics (TOG),2021,40(4):1 − 16.
|
[10] |
HU J, YIP M K , ALONSO G E, et al. Efficient real-time dynamic diffuse global illumination using signed distance fields[J] . The Visual Computer,2021,37:2539 − 2551. doi: 10.1007/s00371-021-02197-0
|
[11] |
OUYANG Y, LIU S Q, KETTUNEN M, et al. ReSTIR GI: Path resampling for real-time path tracing[J] . Computer Graphics Forum, 2021,40(8): 17−29.
|
[12] |
XIE F, MISHCHUK P, HUNT W, et al. Real time cluster path tracing[C] //Proceedings of SIGGRAPH Asia 2021 Technical Communications. Tokyo: SIGGRAPH, 2021: 1−4.
|
[13] |
IGLESIAS GUITIÁN J A, MANE P S, MOON B, et al. Real-time denoising of volumetric path tracing for direct volume rendering[J] . IEEE Transactions on Visualization and Computer Graphics,2022,28(7):1 − 15.
|
[14] |
HUO Y, YOON S E. A survey on deep learning-based Monte Carlo denoising[J] . Computational Visual Media,2021,7(2):169 − 185. doi: 10.1007/s41095-021-0209-9
|
[15] |
MARA M, MCGUIRE M, NOWROUZEZAHRAI D, et al. Deep G-buffers for stable global illumination approximation[J] . IEEE Transactions on Visualization and Computer Graphics,2017,24(4):1408 − 1421.
|
[16] |
ABBAS F, MALAH M, BABAHENINI M C. Approximating global illumination with ambient occlusion and environment light via generative adversarial networks[J] . Pattern Recognition Letters,2023,166:209 − 217. doi: 10.1016/j.patrec.2022.12.007
|
[17] |
WANG Q, ZHONG Z Z, HUO Y C, et al. State of the art on deep learning-enhanced rendering methods[J] . Machine Intelligence Research,2023,20(6):799 − 821. doi: 10.1007/s11633-022-1400-x
|
[18] |
GOMES T, ESTEVAO L, DE TOLEDO R, et al. A survey of glsl examples[C] //Proceedings of the 25th SIBGRAPI Conference on Graphics, Patterns and Images Tutorials. Ouro Preto: IEEE, 2012: 60−73.
|
[19] |
RATH A, GRITTMANN P, HERHOLZ S, et al. EARS: Efficiency-aware Russian roulette and splitting[J] . ACM Transactions on Graphics (TOG),2022,41(4):1 − 14.
|
[20] |
TANG H, XU D, YAN Y, et al. Multi-channel attention selection gans for guided image-to-image translation[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):6055 − 6071.
|
[21] |
ISOLA P, ZHU J Y, ZHOU T H, et al. Pix2Pix gan for image-to-image translation[EB/OL] . (2016-11-21)[2023-12-15] . https://arxiv.org/abs/1611.07004.
|
[22] |
STAUDEMEYER R C, MORRIS E R. Understanding LSTM: A tutorial into long short-term memory recurrent neural networks[J] . arXiv, 2019. DOI: 10.48550/arXiv.1909.09586.
|
[23] |
PAN Z, YU W J, WANG B S, et al. Loss functions of generative adversarial networks (GANs): Opportunities and challenges[J] . IEEE Transactions on Emerging Topics in Computational Intelligence,2020,4(4):500 − 522. doi: 10.1109/TETCI.2020.2991774
|
[24] |
LI M, HSU W, XIE X D, et al. SACNN: Self-attention convolutional neural network for low-dose CT denoising with self-supervised perceptual loss network[J] . IEEE Transactions on Medical Imaging,2020,39(7):2289 − 2301. doi: 10.1109/TMI.2020.2968472
|
[25] |
XU J, LI Z, DU B, et al. Reluplex made more practical: Leaky ReLU[C] //Proceedings of 2020 IEEE Symposium on Computers and Communications (ISCC). Rennes: IEEE, 2020: 1−7.
|
[26] |
KINGMA D P, BA J. Adam: A method for stochastic optimization[C] //Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2014. DOI: 10.48550/arXiv.1412.6980.
|