Volume 39 Issue 1
May  2025
Turn off MathJax
Article Contents
LU Kun, WU Shujing, ZHANG Cheng, WANG Dazhong. Study on flow field and heat transfer mechanism of nanofluid minimal quantity lubrication machining for Ti6Al4V[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 99-105. doi: 10.12299/jsues.24-0030
Citation: LU Kun, WU Shujing, ZHANG Cheng, WANG Dazhong. Study on flow field and heat transfer mechanism of nanofluid minimal quantity lubrication machining for Ti6Al4V[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 99-105. doi: 10.12299/jsues.24-0030

Study on flow field and heat transfer mechanism of nanofluid minimal quantity lubrication machining for Ti6Al4V

doi: 10.12299/jsues.24-0030
  • Received Date: 2024-01-29
  • Publish Date: 2025-05-19
  • The addition of aluminum oxide (Al2O3) nanoparticle to minimal quantity lubrication (MQL) base oils forms nanofluid minimal quantity lubrication (NMQL). Using NMQL machining can further enhance the tribological state and improve the surface quality of workpiece. A three-dimensional computational fluid dynamic (CFD) model was developed and simulated to investigate the flow field and heat transfer mechanism during NMQL machining of Ti6Al4V. Through the CFD model, a parametric cross-analysis of different flow rates and inlet pressures was conducted to explore the effects of NMQL on cutting heat under various cooling conditions and the selection principles of optimal process parameters. Finite element analysis of turbulent two-phase flow and heat transfer was performed to sumrize the effect of adding Al2O3 nanoparticle to MQL base oil on the temperature distribution across the tool surface. The results show that the average tool temperature decreases with increasing Al2O3 nanoparticle concentration, and the maximum temperature near the tool tip decreases by about 6% on average, thus effectively improving the temperature distribution in the cutting area. The exploration of the flow field and heat transfer during NMQL machining of Ti6Al4V can provide valuable references for studying machining modes and mechanisms of difficult-to-process materials such as Ti6Al4V, offering both theoretical significance and application value.
  • loading
  • [1]
    陈德雄 , 佘青青 , 李哲 , 等. 钛合金超声振动辅助切削研究进展[J] . 精密成形工程,2020,12(5):151 − 158.
    [2]
    YANG S C, HE C S, ZHENG M L. A prediction model for titanium alloy surface roughness when milling with micro-textured ball-end cutters at different workpiece inclination angles[J] . The International Journal of Advanced Manufacturing Technology,2019,100(5/6/7/8):2115 − 2122. doi: 10.1007/s00170-018-2852-6
    [3]
    李宝栋, 唐林虎, 易湘斌, 等. 基于响应面分析法的Ti-6Al-2Sn-4Zr-2Mo钛合金切削温度仿真研究[J] . 化工机械,2019,46(3):300 − 303.
    [4]
    黎宇嘉, 黄兵, 鲁娟, 等. 基于有限元模拟的Ti6Al4V铣削过程参数多目标优化[J] . 中国机械工程,2021,32(13):1555 − 1561.
    [5]
    王大中, 吴淑晶, 林靖朋, 等. 基于MQL 的超声椭圆振动微切削Inconel718 的机理研究[J] . 机械工程学报,2021,57(9):264 − 272.
    [6]
    WU W T, LI C H, YANG M, et al. Specific energy and G ratio of grinding cemented carbide under different cooling and lubrication conditions[J] . The International Journal of Advanced Manufacturing Technology,2019,105(1/2/3/4):67 − 82.
    [7]
    YANG M, LI C, ZHANG Y, et al. Research on microscale skull grinding temperature field under different cooling conditions[J] . Applied Thermal Engineering,2017,126:525 − 537. doi: 10.1016/j.applthermaleng.2017.07.183
    [8]
    王晓铭, 李长河, 张彦彬, 等. 微量润滑赋能雾化与供给系统关键技术研究进展[J] . 表面技术,2022,51(9):1 − 14.
    [9]
    杨简彰, 王成勇, 袁尧辉, 等. 微量润滑复合增效技术及其应用研究进展[J] . 中国机械工程,2022,33(5):506 − 528.
    [10]
    宋宇翔, 许芝令, 李长河, 等. 纳米生物润滑剂微量润滑磨削性能研究进展[J] . 表面技术,2023,52(12):1 − 19.
    [11]
    KHANNA N, SHAH P, SARIKAYA M, et al. Energy consumption and ecological analysis of sustainable and conventional cutting fluid strategies in machining 15-5 PHSS[J] . Sustainable Materials and Technologies,2022,32:e00416. doi: 10.1016/j.susmat.2022.e00416
    [12]
    JAMIL M, HE N, GUPTA M K, et al. Tool wear mechanisms and its influence on machining tribology of face milled titanium alloy under sustainable hybrid lubri-cooling[J] . Tribology International,2022,170:107497. doi: 10.1016/j.triboint.2022.107497
    [13]
    AN Q, LIU Z, JIANG L, et al. Experimental and numerical research on the effects of minimum quantity lubrication in thread turning of free-cutting steel AISI 1215[J] . Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2015,229(5):878 − 885. doi: 10.1177/0954405414534429
    [14]
    隋孟华, 张乃庆, 李长河, 等. 纳米流体微量润滑磨削硬质合金温度场模型与实验验证[J] . 制造技术与机床,2020,3:85 − 91.
    [15]
    NAJIHA M S, RAHMAN M M. A computational fluid dynamics analysis of single and three nozzles minimum quantity lubricant flow for milling[J] . International Journal of Automotive and Mechanical Engineering,2014,10:1891 − 1900. doi: 10.15282/ijame.10.2014.6.0157
    [16]
    VAZQUEZ E, KEMMOKU D T, NORITOMI P Y, et al. Computer fluid dynamics analysis for efficient cooling and lubrication conditions in micromilling of Ti6Al4V alloy[J] . Materials and Manufacturing Processes,2014,29(11/12):1494 − 1501. doi: 10.1080/10426914.2014.941864
    [17]
    KIM S H, LEE S W, HAN S, et al. Numerical investigation of thermal characteristics of spray cooling with minimum quantity lubrication in milling process[J] . Applied Mathematical Modelling, 2019, 65: 137−147.
    [18]
    ZHU G, YUAN S, CHEN B. Numerical and experimental optimizations of nozzle distance in minimum quantity lubrication (MQL) milling process[J] . The International Journal of Advanced Manufacturing Technology,2019,101:565 − 578. doi: 10.1007/s00170-018-2928-3
    [19]
    PENG R, ZHAO L F, TANG X, et al. Heat transfer performance assessment of abrasive phyllotaxy arrangement in internal cooling grinding[J] . International Journal of Heat and Mass Transfer, 2022, 197: 123317.
    [20]
    DOE J, SMITH A, JOHNSON M, et al. Numerical CFD-FEM model for machining titanium Ti-6Al-4V with nano minimum quantity lubrication: a step towards digital twin[J] . Journal of Manufacturing Processes, 2023, 66: 123−145.
    [21]
    文华. 基于CFD的柴油机喷雾混合过程的多维数值模拟[D] . 武汉: 华中科技大学, 2004.
    [22]
    KLEINSTREUER C, FENG Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review[J] . Nanoscale Research Letters,2011,6:1 − 13.
    [23]
    PAK B C, CHO Y I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J] . Experimental Heat Transfer an International Journal,1998,11(2):151 − 170. doi: 10.1080/08916159808946559
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (4) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return