Volume 39 Issue 1
May  2025
Turn off MathJax
Article Contents
QIU Lipei, WANG Sha, YAN Jinbiao, HU Bin, SHEN Jun. Thermodynamic analysis of methane dry reforming for H2/CO syngas production[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 73-78. doi: 10.12299/jsues.24-0038
Citation: QIU Lipei, WANG Sha, YAN Jinbiao, HU Bin, SHEN Jun. Thermodynamic analysis of methane dry reforming for H2/CO syngas production[J]. Journal of Shanghai University of Engineering Science, 2025, 39(1): 73-78. doi: 10.12299/jsues.24-0038

Thermodynamic analysis of methane dry reforming for H2/CO syngas production

doi: 10.12299/jsues.24-0038
  • Received Date: 2024-02-22
  • Publish Date: 2025-05-19
  • The thermodynamic analysis of the methane dry reforming process was conducted based on Gibbs free energy minimization principle using HSC Chemistry software. The effects of key parameters including reaction temperature, pressure, feed ratio (n(CH4)/n(CO2) mole ratio), O2 and H2O feed rates on equilibrium concentration of CO and H2, n(H2)/n(CO) mole ratio and carbon deposition were systematically investigated. It is shows that under conditions of 1137 K reaction temperature, 101.325 kPa pressure, n(CH4)/n(CO2) ratio of 1.20, n(O2)/n(CH4) ratio of 0.15, and n(H2O)/n(CH4) ratio of 0.07, the n(H2)/n(CO) ratio is maintained at approximately 0.90, closely approaching the theoretical value of 1. The methane dry reforming enables both greenhouse gas reduction and high-value utilization, with the produced syngas serving as fuel and important chemical feed gas, making it a promising technology for achieving dual carbon goals.
  • loading
  • [1]
    刘勇跃. 基于ASPEN模拟计算的甲烷二氧化碳重整反应研究[J] . 化工设计,2018,28(4):16 − 21. doi: 10.3969/j.issn.1007-6247.2018.04.006
    [2]
    GUO J Z, HOU Z Y, ZHENG X M. Autothermal reforming of CH4 and C3H8 to syngas in a fluidized-bed reactor[J] . Chinses Journal of Catalysis,2010,31(9):1115 − 1121.
    [3]
    YUSUF M, BEG M, UBAIDULLAH M, et al. Kinetic studies for DRM over high-performance Ni–W/Al2O3–MgO catalyst[J] . International Journal of Hydrogen Energy,2022,47(100):42150 − 42159. doi: 10.1016/j.ijhydene.2021.08.021
    [4]
    刘俊义, 祝贺, 张军. 甲烷二氧化碳自热重整工艺分析[J] . 天然气化工(C1化学与化工),2019,44(3):56 − 60.
    [5]
    DEMIDOV D V, MISHIN I V, MIKHAILOV M N. Gibbs free energy minimization as a way to optimize the combined steam and carbon dioxide reforming of methane[J] . International Journal of Hydrogen Energy,2011,36(10):5941 − 5950.
    [6]
    赵倩, 丁干红. 甲烷二氧化碳重整工艺研究及经济性分析[J] . 天然气化工(C1化学与化工),2020,45(4):71 − 75, 81.
    [7]
    ERDOHELI A, CSSERENYI J, SOLYMOSI F. Activation of CH4 and its reaction with CO2 over supported Rh catalysts[J] . Catalysis,1993,141(1):287 − 299.
    [8]
    吕长剑, 王娟. 二氧化碳甲烷化技术进展与应用分析[J] . 炼油技术与工程,2024,54(4):6 − 10.
    [9]
    石天宝, 张秋菊, 纪容昕, 等. CH4和CO2转化催化剂的研究[J] . 化工生产与技术,2000,7(2):12 − 15. doi: 10.3969/j.issn.1006-6829.2000.02.003
    [10]
    傅献彩, 沈文霞, 姚天扬, 等. 物理化学(第五版)[M] . 北京: 高等教育出版社, 2009.
    [11]
    张迪茜. 生物质能源研究进展及应用前景[D] . 北京: 北京理工大学, 2015.
    [12]
    李建伟, 陈冲, 王丹, 等. 甲烷二氧化碳重整热力学分析[J] . 石油与天然气化工,2015,44(3):60 − 64. doi: 10.3969/j.issn.1007-3426.2015.03.013
    [13]
    JENSEN C, DUYAR M S. Thermodynamic analysis of dry reforming of methane for valorization of landfill gas and natural gas[J] . Energy Technology,2021,9(7):2100106.
    [14]
    USMAN M, Wan DAUD W M A, ABBAS H F. Dry reforming of methane: influence of process parameters: a review[J] . Renewable and Sustainable Energy Reviews,2015,45:710 − 744. doi: 10.1016/j.rser.2015.02.026
    [15]
    井德水, 方志刚, 张树友, 等. 氧气/甲烷比对Mo/Al2O3催化剂上甲烷二氧化碳重整反应的影响[J] . 天然气化工(C1化学与化工),2016,41(6):54 − 58.
    [16]
    郭禹. 甲烷二氧化碳重整制合成气镍基催化剂的设计制备[D] . 北京: 北京化工大学, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (1) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return