Volume 39 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
FAN Lei, XIA Peng, DIAO Yongfa. Study on influence of anodic channel groove structure on performance of PEM electrolyzer[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 194-200, 208. doi: 10.12299/jsues.24-0049
Citation: FAN Lei, XIA Peng, DIAO Yongfa. Study on influence of anodic channel groove structure on performance of PEM electrolyzer[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 194-200, 208. doi: 10.12299/jsues.24-0049

Study on influence of anodic channel groove structure on performance of PEM electrolyzer

doi: 10.12299/jsues.24-0049
  • Received Date: 2024-03-04
    Available Online: 2025-09-30
  • Publish Date: 2025-06-30
  • A steady-state two-phase heat and mass transfer model was developed for a single proton exchange membrane (PEM) electrolyzer to investigate the effects of different groove structures (triangular, tooth-shaped and goose-shaped) on its performance. The influence of groove depth, number and spacing was examined. The results show that incorporating grooves in the anode flow channel can improve electrochemical performance, enhance the heat and mass transfer, and increase the efficiency of the electrolyzer, with the best optimization effect of the goose-shaped groove. Within the range of 0.4~1.6 mm in depth, the electrolyzer corresponding to 0.8 mm has the best performance. Compared to a conventional flow channel, the optimized electrolyzer has a lower potential to achieve the same current density, has a better proportion of water saturation and oxygen content in the anode region, and has a lower proton exchange membrane temperature, thereby improving the performance of the electrolyzer.
  • loading
  • [1]
    GARCIA-NAVARRO J C, SCHULZE M, FRIEDRICH K A. Detecting and modeling oxygen bubble evolution and detachment in proton exchange membrane water electrolyzers[J] . International Journal of Hydrogen Energy, 2019, 44(50): 27190 − 27203. doi: 10.1016/j.ijhydene.2019.08.253
    [2]
    LI Y F, KANG Z Y, MO J K, et al. In-situ investigation of bubble dynamics and two-phase flow in proton exchange membrane electrolyzer cells[J] . International Journal of Hydrogen Energy, 2018, 43(24): 11223 − 11233. doi: 10.1016/j.ijhydene.2018.05.006
    [3]
    CHANDESRIS M, MÉDEAU V, GUILLET N, et al. Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density[J] . International Journal of Hydrogen Energy, 2015, 40(3): 1353 − 1366. doi: 10.1016/j.ijhydene.2014.11.111
    [4]
    MAJASAN J O, CHO J I S, MAIER M, et al. Effect of anode flow channel depth on the performance of polymer electrolyte membrane water electrolyser[J] . ECS Transactions, 2018, 85(13): 1593 − 1603. doi: 10.1149/08513.1593ecst
    [5]
    张永恒, 李荣荣, 林志敏, 等. 小尺度沟槽表面和近距离布置光面构成通道中传热特性数值研究[J] . 工程热物理学报, 2016, 37(2): 378 − 384.
    [6]
    邢晓慧. 质子交换膜电解池传热传质及流场结构研究[D] . 北京: 北京交通大学, 2020.
    [7]
    谢峰, 王秀英, 雷小宝. 鲨鱼皮减阻结构的几何建模与数值分析[J] . 系统仿真学报, 2014, 26(7): 1472 − 1476.
    [8]
    WANG Z M, XU C, WANG X Y, et al. Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell[J] . Science China Technological Sciences, 2021, 64(7): 1555 − 1566. doi: 10.1007/s11431-021-1810-9
    [9]
    WU L Z, ZHANG G B, XIE B, et al. Integration of the detailed channel two-phase flow into three-dimensional multi-phase simulation of proton exchange membrane electrolyzer cell[J] . International Journal of Green Energy, 2021, 18(6): 541 − 555. doi: 10.1080/15435075.2020.1854270
    [10]
    SONG J, GUO H, YE F, et al. Mass transfer and cell performance of a unitized regenerative fuel cell with nonuniform depth channel in oxygen‐side flow field[J] . International Journal of Energy Research, 2019, 43(7): 2940 − 2962. doi: 10.1002/er.4472
    [11]
    ZHOU H R, MENG K, CHEN W S, et al. 3D two‐phase and non‐isothermal modeling for PEM water electrolyzer: heat and mass transfer characteristic investigation[J] . International Journal of Energy Research, 2022, 46(12): 17126 − 17143. doi: 10.1002/er.8375
    [12]
    MENG H. A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations[J] . Journal of Power Sources, 2007, 168(1): 218 − 228. doi: 10.1016/j.jpowsour.2007.03.012
    [13]
    GUO H, GUO Q, YE F, et al. Three-dimensional two-phase simulation of a unitized regenerative fuel cell during mode switching from electrolytic cell to fuel cell[J] . Energy Conversion and Management, 2019, 195: 989 − 1003. doi: 10.1016/j.enconman.2019.05.069
    [14]
    AUBRAS F, DESEURE J, KADJO J J A, et al. Two-dimensional model of low-pressure PEM electrolyser: two-phase flow regime, electrochemical modelling and experimental validation[J] . International Journal of Hydrogen Energy, 2017, 42(42): 26203 − 26216. doi: 10.1016/j.ijhydene.2017.08.211
    [15]
    CAI Y H, FANG Z, CHEN B, et al. Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design[J] . Energy, 2018, 161: 28 − 37. doi: 10.1016/j.energy.2018.07.127
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views (14) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return