Volume 39 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
XIE Xing, WANG Yue, LI Liming, ZHENG Shubin, PENG Lele, ZHU Ting. Research on lightweight rail fastener inspection model based on YOLOv5[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 257-265. doi: 10.12299/jsues.24-0050
Citation: XIE Xing, WANG Yue, LI Liming, ZHENG Shubin, PENG Lele, ZHU Ting. Research on lightweight rail fastener inspection model based on YOLOv5[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 257-265. doi: 10.12299/jsues.24-0050

Research on lightweight rail fastener inspection model based on YOLOv5

doi: 10.12299/jsues.24-0050
  • Received Date: 2024-03-04
    Available Online: 2025-12-22
  • Publish Date: 2025-09-30
  • Aiming at the issues of model parameter size, detection accuracy, and efficiency in rail fastener detection algorithms, a lightweight network model named YOLO-FBS based on YOLOv5n was proposed. The model embeds the Faster Block module to achieve a reduction in network parameters, introduces the SimAM parameter-free feature selection module and the CAFARE lightweight upsampling module to improve detection accuracy, and finally employs LAMP score-based pruning to remove channels with lower weights. The resulting YOLO-FBS model has only 0.28×106 parameters, achieves a detection accuracy of 89.2%, and reaches a detection speed of 190.2 frames/s. This network model offers the advantages of low parameter count and high detection speed while maintaining high detection accuracy.
  • loading
  • [1]
    李海锋, 许玉德. 计算机编制铁路轨道养护维修计划的方法[J] . 同济大学学报, 2004, 32(4): 480 − 484.
    [2]
    张曦. 浅析超声波探伤技术在钢轨探伤中的应用[J] . 中国设备工程, 2023(5): 130 − 132. doi: 10.3969/j.issn.1671-0711.2023.05.054
    [3]
    叶杭璐, 王超, 吴杨娜, 等. 轨道交通涡流探伤仪的设计与实现[J] . 浙江树人大学学报(自然科学版), 2016, 16(3): 7 − 11.
    [4]
    韦若禹, 李舒婷, 吴松荣, 等. 基于改进YOLO V3算法的轨道扣件缺陷检测[J] . 铁道标准设计, 2020, 64(12): 30 − 36.
    [5]
    邹文武, 许贵阳, 白堂博. 基于EfficientDet的轨道扣件识别与检测[J] . 武汉大学学报(工学版), 2024, 57(7): 1006 − 1012.
    [6]
    HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL] . (2017-04-17)[2021-01-12] . https://arxiv.org/abs/1704.04861.
    [7]
    SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
    [8]
    ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848−6856.
    [9]
    HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577−1586.
    [10]
    CHEN J R, KAO S H, HE H, et al. Run, don't walk: chasing higher FLOPS for faster neural networks[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 12021−12031.
    [11]
    YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[J] . PMLR, 2021, 139: 11863−11874.
    [12]
    WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware ReAssembly of FEatures[C] //IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 3007−3016.
    [13]
    LEE J, PARK S, MO S, et al. Layer-adaptive sparsity for the magnitude-based pruning[EB/OL] . (2020-10-15)[2024-01-15] . https://doi.org/10.48550/arXiv.2010.07611.
    [14]
    HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132−7141.
    [15]
    WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] //Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3−19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (28) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return