Volume 39 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
JIANG Hongbo, LIU Chaofeng, TANG Zhiren, HOU Feiyu. Response analysis of tethered UAV in dynamic wind environment[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 201-208. doi: 10.12299/jsues.24-0072
Citation: JIANG Hongbo, LIU Chaofeng, TANG Zhiren, HOU Feiyu. Response analysis of tethered UAV in dynamic wind environment[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 201-208. doi: 10.12299/jsues.24-0072

Response analysis of tethered UAV in dynamic wind environment

doi: 10.12299/jsues.24-0072
  • Received Date: 2024-03-17
    Available Online: 2025-09-30
  • Publish Date: 2025-06-30
  • In order to investigate the aerodynamic performance of the tethered unmanned aerial vehicle (UAV) and the deformation of the tether, the dynamic response analysis of the tethered UAV was conducted. A tethered UAV model was developed, and numerical simulations were performed using using a fluid-structure interaction (FSI) analysis method, standard k-ε turbulence model, and slip-grid technology. The dynamic performance of the tethered UAV system under crosswinds at different wind speeds was investigated. The results shows that the vortex strength increases significantly with crosswind speed, particularly on the windward side. The tether deformed under the combined effect of wind and its gravity, and the maximum deformation occurs at a specific location and varies with wind speed. The maximum deformation was 448 mm, and the overall average deformation was 145 mm in 10 s. It can be used as a reference for the design and utilization conditions of tethered UAVs.
  • loading
  • [1]
    NICOTRA M M, NALDI R, GARONE E. Nonlinear control of a tethered UAV: the taut cable case[J] . Automatica, 2017, 78: 174 − 184. doi: 10.1016/j.automatica.2016.12.018
    [2]
    DICEMBRINI E, SCANAVINO M, DABBENE F, et al. Modelling and simulation of a tethered UAS[C] //Proceedings of 2020 International Conference on Unmanned Aircraft Systems. Athens: IEEE, 2020: 1801 − 1808.
    [3]
    邢龙涛, 刘习军, 张素侠. 系留无人机系统振动特性分析[J] . 应用力学学报, 2021, 38(1): 106 − 112. doi: 10.11776/cjam.38.01.C075
    [4]
    KUMAR R, AGARWAL S R, KUMAR M. Modeling and control of a tethered tilt-rotor quadcopter with atmospheric wind model[J] . IFAC-PapersOnLine, 2021, 54(20): 463 − 468. doi: 10.1016/j.ifacol.2021.11.216
    [5]
    JOSHI V, JAIMAN R K, OLLIVIER-GOOCH C. A variational flexible multibody formulation for partitioned fluid–structure interaction: application to bat-inspired drones and unmanned air-vehicles[J] . Computers & Mathematics with Applications, 2020, 80(12): 2707 − 2737.
    [6]
    刘聪, 魏志强, 韩红蓉, 等. 侧风作用下无人机旋翼悬停状态气动响应分析[J] . 中国安全科学学报, 2021, 31(9): 106 − 112.
    [7]
    翁佳文, 邵伟平, 郝永平, 等. 基于流固耦合的共轴双旋翼气动性分析[J] . 沈阳理工大学学报, 2022, 41(4): 78 − 83.
    [8]
    DE CASTRO D F, SANTOS J S, BATISTA M, et al. Modeling and control of tethered unmanned multicopters in hovering flight[C] //Proceedings of the AIAA Modeling and Simulation Technologies Conference. Dallas: AIAA, 2015: 2333.
    [9]
    董军, 叶靓. DDES方法在复杂旋翼流场计算中的应用[J] . 航空学报, 2018, 39(6): 121689.
    [10]
    YANG F B, XUE X Y, ZHANG L, et al. Numerical simulation and experimental verification on downwash air flow of six-rotor agricultural unmanned aerial vehicle in hover[J] . International Journal of Agricultural and Biological Engineering, 2017, 10(4): 41 − 53. doi: 10.25165/j.ijabe.20171004.3077
    [11]
    ZHANG S X, TANG Y Q, LIU H X. Snap tension in mooring lines of deepwater platform[J] . China Ocean Engineering, 2009, 23(3): 415 − 428.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (15) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return