Citation: | CAO Jieqiang, ZHANG Liqiang, LI Junli, MAO Jian, LIU Gang. An accuracy improvement method for automatic fiber placement defect recognition based on attention data enhancement[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 243-250. doi: 10.12299/jsues.24-0074 |
[1] |
JUAREZ P D, GREGORY E D. In situ thermal inspection of automated fiber placement for manufacturing induced defects[J] . Composites Part B: Engineering, 2021, 220: 109002. doi: 10.1016/j.compositesb.2021.109002
|
[2] |
DENKENA B, SCHMIDT C, VÖLTZER K, et al. Thermographic online monitoring system for automated fiber placement processes[J] . Composites Part B: Engineering, 2016, 97: 239 − 243. doi: 10.1016/j.compositesb.2016.04.076
|
[3] |
MEISTER S, MÖLLER N, STÜVE J, et al. Synthetic image data augmentation for fibre layup inspection processes: techniques to enhance the data set[J] . Journal of Intelligent Manufacturing, 2021, 32(6): 1767 − 1789. doi: 10.1007/s10845-021-01738-7
|
[4] |
MEISTER S, WERMES M A M, STÜVE J, et al. Explainability of deep learning classifier decisions for optical detection of manufacturing defects in the automated fiber placement process[C] //Proceedings of SPIE 11787, Automated Visual Inspection and Machine Vision IV. Germany: SPIE, 2021. DOI: 10.1117/12.2592584.
|
[5] |
刘坤, 文熙, 黄闽茗, 等. 基于生成对抗网络的太阳能电池缺陷增强方法[J] . 浙江大学学报(工学版), 2020, 54(4): 684 − 693. doi: 10.3785/j.issn.1008-973X.2020.04.007
|
[6] |
葛轶洲, 刘恒, 王言, 等. 小样本困境下的深度学习图像识别综述[J] . 软件学报, 2022, 33(1): 193 − 210.
|
[7] |
陆福星, 陈忻, 陈桂林, 等. 背景自适应的多特征融合的弱小目标检测[J] . 红外与激光工程, 2019, 48(3): 0326002.
|
[8] |
李维鹏, 杨小冈, 李传祥, 等. 红外目标检测网络改进半监督迁移学习方法[J] . 红外与激光工程, 2021, 50(3): 20200511.
|
[9] |
HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 3037−3046.
|
[10] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C] //Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: ACM, 2014: 2672−2680.
|
[11] |
RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C] //Proceedings of the 4th International Conference on Learning Representations. San Juan: ICLR, 2016.
|
[12] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C] //Proceedings of the 34th International Conference on Machine Learning. Sydney: ACM, 2017: 214−223.
|
[13] |
CHEN K Q, CAI N, WU Z S, et al. Multi-scale GAN with transformer for surface defect inspection of IC metal packages[J] . Expert Systems with Applications, 2023, 212: 118788. doi: 10.1016/j.eswa.2022.118788
|
[14] |
WU J Q, HUANG Z W, THOMA J, et al. Wasserstein divergence for GANs[C] //Proceedings of the 15th European Conference on Computer Vision. Munich: Spring, 2018: 673−688.
|
[15] |
KHALED A. BCN: batch channel normalization for image classification[C] //Proceedings of the 27th International Conference on Pattern Recognition. Kolkata: Springer, 2025: 295−308.
|
[16] |
NIU J W, LIU Z G, PAN Q, et al. Conditional self-attention generative adversarial network with differential evolution algorithm for imbalanced data classification[J] . Chinese Journal of Aeronautics, 2023, 36(3): 303 − 315. doi: 10.1016/j.cja.2022.09.014
|
[17] |
HYEON-WOO N, YU-JI K, HEO B, et al. Scratching visual transformer's back with uniform attention[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 5784−5795.
|
[18] |
王星, 杜伟, 陈吉, 等. 基于深度残差生成式对抗网络的样本生成方法[J] . 控制与决策, 2020, 35(8): 1887 − 1894.
|
[19] |
KAMMOUN A, SLAMA R, TABIA H, et al. Generative adversarial networks for face generation: a survey[J] . ACM Computing Surveys, 2023, 55(5): 94.
|
[20] |
JIANG J Q, CHEN M K, FAN J A. Deep neural networks for the evaluation and design of photonic devices[J] . Nature Reviews Materials, 2021, 6(8): 679 − 700.
|
[21] |
ZHOU K Y, LIU Z W, QIAO Y, et al. Domain generalization: a survey[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4396 − 4415.
|
[22] |
GUI J, SUN Z N, WEN Y G, et al. A review on generative adversarial networks: algorithms, theory, and applications[J] . IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3313 − 3332. doi: 10.1109/TKDE.2021.3130191
|
[23] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J] . Proceedings of the IEEE, 1998, 86(11): 2278 − 2324. doi: 10.1109/5.726791
|
[24] |
CHEN L Y, LI S B, BAI Q, et al. Review of image classification algorithms based on convolutional neural networks[J] . Remote Sensing, 2021, 13(22): 4712. doi: 10.3390/rs13224712
|
[25] |
POUYANFAR S, SADIQ S, YAN Y L, et al. A survey on deep learning: algorithms, techniques, and applications[J] . ACM Computing Surveys (CSUR), 2019, 51(5): 92.
|
[26] |
ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C] //Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8697−8710.
|
[27] |
ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C] //Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848−6856.
|