Volume 39 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
CAO Jieqiang, ZHANG Liqiang, LI Junli, MAO Jian, LIU Gang. An accuracy improvement method for automatic fiber placement defect recognition based on attention data enhancement[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 243-250. doi: 10.12299/jsues.24-0074
Citation: CAO Jieqiang, ZHANG Liqiang, LI Junli, MAO Jian, LIU Gang. An accuracy improvement method for automatic fiber placement defect recognition based on attention data enhancement[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 243-250. doi: 10.12299/jsues.24-0074

An accuracy improvement method for automatic fiber placement defect recognition based on attention data enhancement

doi: 10.12299/jsues.24-0074
  • Received Date: 2024-02-08
    Available Online: 2025-09-30
  • Publish Date: 2025-06-30
  • The scarcity of infrared defect samples and the difficulty in acquiring them during the automated tape laying process result in low classification accuracy and ineffective defect identification by classification model algorithm. To address this issue, a data augmentation method based on an attention mechanism Wasserstein generative adversarial network (WGAN) was proposed. A CB-Attention module was introduced into the generator to enhance its capability to capture image feature, expand the receptive field, and improve the quality of generated images without adding extra parameters. Batch channel normalization was employed to adaptively integrate information from both channel and batch dimensions, thereby imcreasing the model's training speed and generalization ability. Experimental results demonstrate that the samples generated by the attention-based data augmentation method are diverse and of high quality. Incorporating these samples into the small dataset of automated tape laying defects significantly improves defect recongnition accuracy, which validates the ffectiveness of the proposed algorithm and lays a data foundation for automated tape laying defect classification algorithms.
  • loading
  • [1]
    JUAREZ P D, GREGORY E D. In situ thermal inspection of automated fiber placement for manufacturing induced defects[J] . Composites Part B: Engineering, 2021, 220: 109002. doi: 10.1016/j.compositesb.2021.109002
    [2]
    DENKENA B, SCHMIDT C, VÖLTZER K, et al. Thermographic online monitoring system for automated fiber placement processes[J] . Composites Part B: Engineering, 2016, 97: 239 − 243. doi: 10.1016/j.compositesb.2016.04.076
    [3]
    MEISTER S, MÖLLER N, STÜVE J, et al. Synthetic image data augmentation for fibre layup inspection processes: techniques to enhance the data set[J] . Journal of Intelligent Manufacturing, 2021, 32(6): 1767 − 1789. doi: 10.1007/s10845-021-01738-7
    [4]
    MEISTER S, WERMES M A M, STÜVE J, et al. Explainability of deep learning classifier decisions for optical detection of manufacturing defects in the automated fiber placement process[C] //Proceedings of SPIE 11787, Automated Visual Inspection and Machine Vision IV. Germany: SPIE, 2021. DOI: 10.1117/12.2592584.
    [5]
    刘坤, 文熙, 黄闽茗, 等. 基于生成对抗网络的太阳能电池缺陷增强方法[J] . 浙江大学学报(工学版), 2020, 54(4): 684 − 693. doi: 10.3785/j.issn.1008-973X.2020.04.007
    [6]
    葛轶洲, 刘恒, 王言, 等. 小样本困境下的深度学习图像识别综述[J] . 软件学报, 2022, 33(1): 193 − 210.
    [7]
    陆福星, 陈忻, 陈桂林, 等. 背景自适应的多特征融合的弱小目标检测[J] . 红外与激光工程, 2019, 48(3): 0326002.
    [8]
    李维鹏, 杨小冈, 李传祥, 等. 红外目标检测网络改进半监督迁移学习方法[J] . 红外与激光工程, 2021, 50(3): 20200511.
    [9]
    HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 3037−3046.
    [10]
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C] //Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: ACM, 2014: 2672−2680.
    [11]
    RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[C] //Proceedings of the 4th International Conference on Learning Representations. San Juan: ICLR, 2016.
    [12]
    ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C] //Proceedings of the 34th International Conference on Machine Learning. Sydney: ACM, 2017: 214−223.
    [13]
    CHEN K Q, CAI N, WU Z S, et al. Multi-scale GAN with transformer for surface defect inspection of IC metal packages[J] . Expert Systems with Applications, 2023, 212: 118788. doi: 10.1016/j.eswa.2022.118788
    [14]
    WU J Q, HUANG Z W, THOMA J, et al. Wasserstein divergence for GANs[C] //Proceedings of the 15th European Conference on Computer Vision. Munich: Spring, 2018: 673−688.
    [15]
    KHALED A. BCN: batch channel normalization for image classification[C] //Proceedings of the 27th International Conference on Pattern Recognition. Kolkata: Springer, 2025: 295−308.
    [16]
    NIU J W, LIU Z G, PAN Q, et al. Conditional self-attention generative adversarial network with differential evolution algorithm for imbalanced data classification[J] . Chinese Journal of Aeronautics, 2023, 36(3): 303 − 315. doi: 10.1016/j.cja.2022.09.014
    [17]
    HYEON-WOO N, YU-JI K, HEO B, et al. Scratching visual transformer's back with uniform attention[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 5784−5795.
    [18]
    王星, 杜伟, 陈吉, 等. 基于深度残差生成式对抗网络的样本生成方法[J] . 控制与决策, 2020, 35(8): 1887 − 1894.
    [19]
    KAMMOUN A, SLAMA R, TABIA H, et al. Generative adversarial networks for face generation: a survey[J] . ACM Computing Surveys, 2023, 55(5): 94.
    [20]
    JIANG J Q, CHEN M K, FAN J A. Deep neural networks for the evaluation and design of photonic devices[J] . Nature Reviews Materials, 2021, 6(8): 679 − 700.
    [21]
    ZHOU K Y, LIU Z W, QIAO Y, et al. Domain generalization: a survey[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4396 − 4415.
    [22]
    GUI J, SUN Z N, WEN Y G, et al. A review on generative adversarial networks: algorithms, theory, and applications[J] . IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3313 − 3332. doi: 10.1109/TKDE.2021.3130191
    [23]
    LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J] . Proceedings of the IEEE, 1998, 86(11): 2278 − 2324. doi: 10.1109/5.726791
    [24]
    CHEN L Y, LI S B, BAI Q, et al. Review of image classification algorithms based on convolutional neural networks[J] . Remote Sensing, 2021, 13(22): 4712. doi: 10.3390/rs13224712
    [25]
    POUYANFAR S, SADIQ S, YAN Y L, et al. A survey on deep learning: algorithms, techniques, and applications[J] . ACM Computing Surveys (CSUR), 2019, 51(5): 92.
    [26]
    ZOPH B, VASUDEVAN V, SHLENS J, et al. Learning transferable architectures for scalable image recognition[C] //Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8697−8710.
    [27]
    ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C] //Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6848−6856.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (10) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return