Volume 39 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
SUN Yijia, WANG Yansong, LIU Ningning, YUAN Tao, XIE Xiaolong, GUO Hui. A multi-objective optimization method for active control of loudness and sharpness of wiper windshield systems[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 119-124, 222. doi: 10.12299/jsues.24-0080
Citation: SUN Yijia, WANG Yansong, LIU Ningning, YUAN Tao, XIE Xiaolong, GUO Hui. A multi-objective optimization method for active control of loudness and sharpness of wiper windshield systems[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 119-124, 222. doi: 10.12299/jsues.24-0080

A multi-objective optimization method for active control of loudness and sharpness of wiper windshield systems

doi: 10.12299/jsues.24-0080
  • Received Date: 2024-03-21
    Available Online: 2025-09-30
  • Publish Date: 2025-06-30
  • The reduction of noise in the power system of electric vehicles has accentuated the contradictory issues between loudness and sharpness caused by wiper reversal. Multi-objective optimization methods can help guide multi-band collaborative active control and improve the sound quality of the wiper windshield system. Noise data during wiper operation were collected through actual vehicle test. A multi-objective optimization formulation was constructed based on the direct mapping relationships between the amplitude of characteristic frequency bands and loudness and sharpness. Sensitivity analysis identified a set of sensitive frequency bands that most significantly affect changes in loudness and sharpness. The multi-objective genetic algorithm NSGA-Ⅱ was employed to obtain the amplitude values of these sensitive bands yielding the best compromise between loudness and sharpness. Active control of loudness and sharpness was simulated using an active noise equalization (ANE) algorithm based on a filtered-error least mean square algorithm (FELMS) adaptive filter, verifying the feasibility of the optimal solution. The results show that the loudness is reduced by 15.4%, sharpness by 18%, achieving 94% of the optimal loudness reduction and 87% of the optimal sharpness reduction, demonstrating improved sound quality.
  • loading
  • [1]
    ZWICKER E, FASTL H. Psychoacoustics: facts and models[M] . New York: Springer-Verlag, 1990.
    [2]
    申秀敏, 左曙光, 韩乐, 等. 基于支持向量机的车内噪声声品质预测[J] . 振动、测试与诊断, 2011, 31(1): 55 − 58. doi: 10.3969/j.issn.1004-6801.2011.01.013
    [3]
    HUANG H B, HUANG X R, LI R X, et al. Sound quality prediction of vehicle interior noise using deep belief networks[J] . Applied Acoustics, 2016, 113: 149 − 161. doi: 10.1016/j.apacoust.2016.06.021
    [4]
    WANG Y S, SHEN G Q, XING Y F. A sound quality model for objective synthesis evaluation of vehicle interior noise based on artificial neural network[J] . Mechanical Systems and Signal Processing, 2014, 45(1): 255 − 266. doi: 10.1016/j.ymssp.2013.11.001
    [5]
    XING Y F, WANG Y S, SHI L, et al. Sound quality recognition using optimal wavelet-packet transform and artificial neural network methods[J] . Mechanical Systems and Signal Processing, 2016, 66-67: 875 − 892. doi: 10.1016/j.ymssp.2015.05.003
    [6]
    MOSQUERA-SÁNCHEZ J A, SARRAZIN M, JANSSENS K, et al. Multiple target sound quality balance for hybrid electric powertrain noise[J] . Mechanical Systems and Signal Processing, 2018, 99: 478 − 503. doi: 10.1016/j.ymssp.2017.06.034
    [7]
    MOSQUERA-SÁNCHEZ J A, DESMET W, de OLIVEIRA L P R. Multichannel feedforward control schemes with coupling compensation for active sound profiling[J] . Journal of Sound and Vibration, 2017, 396: 1 − 29. doi: 10.1016/j.jsv.2017.02.016
    [8]
    CHANG S C, CHEN S C. Dither signals with particular application to the control of windscreen wiper blades[J] . International Journal of Solids and Structures, 2006, 43(22/23): 6998 − 7013.
    [9]
    WANG Z, CHAU K T. Control of chaotic vibration in automotive wiper systems[J] . Chaos, Solitons & Fractals, 2009, 39(1): 168 − 181.
    [10]
    STENTI A, VANDEROSTYNE K, HAUSER F. A mechatronic approach to reduce wiper system reversal noise: development of a multi-objective optimization tool[C] //Proceedings of Inernational Conference on Noise and Vibration Engineering. Leuven: ISMA, 2012: 4033 − 4040.
    [11]
    杨雪, 王岩松, 郭辉, 等. 雨刮反转过程摩擦特性分析[J] . 噪声与振动控制, 2022, 42(5): 21 − 28. doi: 10.3969/j.issn.1006-1355.2022.05.004
    [12]
    黄涛, 毕锦烟, 涂梨娥. 基于传递路径分析的电动汽车雨刮噪声品质优化[J] . 湖北汽车工业学院学报, 2022, 36(1): 33 − 37. doi: 10.3969/j.issn.1008-5483.2022.01.008
    [13]
    裴旭, 黄鼎友, 曾发林, 等. 基于主动噪声控制技术改善车内声品质[J] . 广西大学学报(自然科学版), 2019, 44(3): 667 − 676.
    [14]
    张帅. 基于FxLMS算法的车内声品质主动控制方法研究[D] . 上海: 上海工程技术大学, 2019.
    [15]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J] . IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182 − 197. doi: 10.1109/4235.996017
    [16]
    KUO S M, TSAI J. Residual noise shaping technique for active noise control systems[J] . The Journal of the Acoustical Society of America, 1994, 95(3): 1665 − 1668. doi: 10.1121/1.408555
    [17]
    刘宗巍. 车内噪声声品质建模分析与自适应主动控制研究[D] . 吉林: 吉林大学, 2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (23) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return