Volume 39 Issue 2
Jun.  2025
Turn off MathJax
Article Contents
LIU Yufei, ZHANG Ying, CHEN Zhiying, WANG Xiang. Microstructure evolution during hot deformation and dynamic transformation of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy in α + β two-phase region[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 157-165. doi: 10.12299/jsues.24-0097
Citation: LIU Yufei, ZHANG Ying, CHEN Zhiying, WANG Xiang. Microstructure evolution during hot deformation and dynamic transformation of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy in α + β two-phase region[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 157-165. doi: 10.12299/jsues.24-0097

Microstructure evolution during hot deformation and dynamic transformation of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy in α + β two-phase region

doi: 10.12299/jsues.24-0097
  • Received Date: 2024-03-31
    Available Online: 2025-09-30
  • Publish Date: 2025-06-30
  • The rheological behavior and microstructure evolution of the new near-α titanium alloy under different deformation conditions were investigated by thermal compression tests and microstructure characterization experiments. The results show that the real stress-strain curve displays characteristics of stress decrease and tendency to stabilize after the peak. At high strain rates, the peak stress is high and decreases rapidly. The transformation of the hard-oriented α phase to the soft-oriented β phase leads to a rapid decrease in the flow stress, with dynamic recrystallization (DRX) refining grains and dynamic recovery (DRV) rearranging dislocations within subgrains. Based on these findings, a dynamic recrystallization volume fraction model was established.
  • loading
  • [1]
    ZHAO H, YE L Y, CHENG Q S, et al. Constitutive model and processing maps of 7055 aluminum alloy used for fasteners[J] . Materials Today Communications, 2022, 33: 104996. doi: 10.1016/j.mtcomm.2022.104996
    [2]
    WHITTAKER J T, HESS D P. Ductility of titanium alloy and stainless steel aerospace fasteners[J] . Journal of Failure Analysis and Prevention, 2015, 15(5): 571−575. doi: 10.1007/s11668-015-0007-8
    [3]
    BAI Q, LIN J G, DEAN T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions[J] . Materials Science and Engineering: A, 2013, 559: 352 − 358. doi: 10.1016/j.msea.2012.08.110
    [4]
    PARADKAR A, KAMAT S V, GOGIA A K, et al. Effect of Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti–Al–Nb alloys[J] . Materials Science and Engineering: A, 2008, 487(1/2): 14 − 19.
    [5]
    JIANG Y Q, LIN Y C, JIANG X Y, et al. Hot tensile properties, microstructure evolution and fracture mechanisms of Ti-6Al-4V alloy with initial coarse equiaxed phases[J] . Materials Characterization, 2020, 163: 110272. doi: 10.1016/j.matchar.2020.110272
    [6]
    蔡贇, 孙朝阳, 万李, 等. AZ80镁合金动态再结晶软化行为研究[J] . 金属学报, 2016, 52(9): 1123−1132.
    [7]
    LI A B, HUANG L J, MENG Q Y, et al. Hot working of Ti–6Al–3Mo–2Zr–0.3Si alloy with lamellar α + β starting structure using processing map[J] . Materials & Design, 2009, 30(5): 1625 − 1631.
    [8]
    ZHAO Z L, LIU N, XU W X, et al. Rapid dynamic transformation in the initial stage of hot deformation of a near alpha titanium alloy[J] . Materials Letters, 2021, 305: 130837. doi: 10.1016/j.matlet.2021.130837
    [9]
    JONAS J J, ARANAS C, FALL A, et al. Transformation softening in three titanium alloys[J] . Materials & Design, 2017, 113: 305 − 310.
    [10]
    JI X K, GUO B Q, JIANG F L, et al. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain[J] . Journal of Materials Science & Technology, 2020, 36: 160 − 166.
    [11]
    GHOSH C, ARANAS C, JONAS J J. Dynamic transformation of deformed austenite at temperatures above the Ae3[J] . Progress in Materials Science, 2016, 82: 151 − 233. doi: 10.1016/j.pmatsci.2016.04.004
    [12]
    LIU H J, XUE Y, ZHANG Z M, et al. Effect of multi-pass hot deformation on flow stress and microstructure of Ti-6Al-4V titanium alloy prepared by hot isostatic pressing[J] . Procedia Manufacturing, 2020, 50: 652 − 657. doi: 10.1016/j.promfg.2020.08.117
    [13]
    ZHAO Z L, LI H, FU M W, et al. Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing[J] . Journal of Alloys and Compounds, 2014, 617: 525 − 533. doi: 10.1016/j.jallcom.2014.08.092
    [14]
    PIAO R X, YANG S L, ZHU Y L, et al. Hot deformation behavior of near-α titanium alloy Ti-1100 prepared by TiH2-based powder metallurgy[J] . Rare Metal Materials and Engineering, 2020, 49(10): 3314 − 3324.
    [15]
    WARCHOMICKA F, POLETTI C, STOCKINGER M. Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr[J] . Materials Science and Engineering: A, 2011, 528(28): 8277 − 8285. doi: 10.1016/j.msea.2011.07.068
    [16]
    ZHAO E T, SUN S C, YU J R, et al. Dynamic recrystallization and silicide precipitation behavior of titanium matrix composites under different strains[J] . Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3416 − 3427. doi: 10.1016/S1003-6326(21)65739-4
    [17]
    KANG X D, DU Z X, WANG Z, et al. Efficient access to ultrafine crystalline metastable-β titanium alloy via dual-phase recrystallization competition[J] . Journal of Materials Research and Technology, 2024, 29: 335−343. doi: 10.1016/j.jmrt.2024.01.101
    [18]
    GUO Y H, NIU J Z, CAO J X, et al. Relative strength of β phase stabilization by transition metals in titanium alloys: the Mo equivalent from a first principles study[J] . Materials Today Communications, 2023, 35: 106123. doi: 10.1016/j.mtcomm.2023.106123
    [19]
    XU S, ZHANG H M, XIAO N M, et al. Mechanisms of macrozone elimination and grain refinement of near α Ti alloy via the spheroidization of the Widmannstätten structure[J] . Acta Materialia, 2023, 260: 119339. doi: 10.1016/j.actamat.2023.119339
    [20]
    BALASUNDAR I, RAGHU T, KASHYAP B P. Hot working and geometric dynamic recrystallisation behaviour of a near-α titanium alloy with acicular microstructure[J] . Materials Science and Engineering: A, 2014, 600: 135 − 144. doi: 10.1016/j.msea.2014.01.088
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return