Citation: | LIU Yufei, ZHANG Ying, CHEN Zhiying, WANG Xiang. Microstructure evolution during hot deformation and dynamic transformation of Ti-5Al-3.3Sn-3.7Zr-0.6Ta-0.5W alloy in α + β two-phase region[J]. Journal of Shanghai University of Engineering Science, 2025, 39(2): 157-165. doi: 10.12299/jsues.24-0097 |
[1] |
ZHAO H, YE L Y, CHENG Q S, et al. Constitutive model and processing maps of 7055 aluminum alloy used for fasteners[J] . Materials Today Communications, 2022, 33: 104996. doi: 10.1016/j.mtcomm.2022.104996
|
[2] |
WHITTAKER J T, HESS D P. Ductility of titanium alloy and stainless steel aerospace fasteners[J] . Journal of Failure Analysis and Prevention, 2015, 15(5): 571−575. doi: 10.1007/s11668-015-0007-8
|
[3] |
BAI Q, LIN J G, DEAN T A, et al. Modelling of dominant softening mechanisms for Ti-6Al-4V in steady state hot forming conditions[J] . Materials Science and Engineering: A, 2013, 559: 352 − 358. doi: 10.1016/j.msea.2012.08.110
|
[4] |
PARADKAR A, KAMAT S V, GOGIA A K, et al. Effect of Al and Nb on the trigger stress for stress-induced martensitic transformation during tensile loading in Ti–Al–Nb alloys[J] . Materials Science and Engineering: A, 2008, 487(1/2): 14 − 19.
|
[5] |
JIANG Y Q, LIN Y C, JIANG X Y, et al. Hot tensile properties, microstructure evolution and fracture mechanisms of Ti-6Al-4V alloy with initial coarse equiaxed phases[J] . Materials Characterization, 2020, 163: 110272. doi: 10.1016/j.matchar.2020.110272
|
[6] |
蔡贇, 孙朝阳, 万李, 等. AZ80镁合金动态再结晶软化行为研究[J] . 金属学报, 2016, 52(9): 1123−1132.
|
[7] |
LI A B, HUANG L J, MENG Q Y, et al. Hot working of Ti–6Al–3Mo–2Zr–0.3Si alloy with lamellar α + β starting structure using processing map[J] . Materials & Design, 2009, 30(5): 1625 − 1631.
|
[8] |
ZHAO Z L, LIU N, XU W X, et al. Rapid dynamic transformation in the initial stage of hot deformation of a near alpha titanium alloy[J] . Materials Letters, 2021, 305: 130837. doi: 10.1016/j.matlet.2021.130837
|
[9] |
JONAS J J, ARANAS C, FALL A, et al. Transformation softening in three titanium alloys[J] . Materials & Design, 2017, 113: 305 − 310.
|
[10] |
JI X K, GUO B Q, JIANG F L, et al. Accelerated flow softening and dynamic transformation of Ti-6Al-4V alloy in two-phase region during hot deformation via coarsening α grain[J] . Journal of Materials Science & Technology, 2020, 36: 160 − 166.
|
[11] |
GHOSH C, ARANAS C, JONAS J J. Dynamic transformation of deformed austenite at temperatures above the Ae3[J] . Progress in Materials Science, 2016, 82: 151 − 233. doi: 10.1016/j.pmatsci.2016.04.004
|
[12] |
LIU H J, XUE Y, ZHANG Z M, et al. Effect of multi-pass hot deformation on flow stress and microstructure of Ti-6Al-4V titanium alloy prepared by hot isostatic pressing[J] . Procedia Manufacturing, 2020, 50: 652 − 657. doi: 10.1016/j.promfg.2020.08.117
|
[13] |
ZHAO Z L, LI H, FU M W, et al. Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing[J] . Journal of Alloys and Compounds, 2014, 617: 525 − 533. doi: 10.1016/j.jallcom.2014.08.092
|
[14] |
PIAO R X, YANG S L, ZHU Y L, et al. Hot deformation behavior of near-α titanium alloy Ti-1100 prepared by TiH2-based powder metallurgy[J] . Rare Metal Materials and Engineering, 2020, 49(10): 3314 − 3324.
|
[15] |
WARCHOMICKA F, POLETTI C, STOCKINGER M. Study of the hot deformation behaviour in Ti–5Al–5Mo–5V–3Cr–1Zr[J] . Materials Science and Engineering: A, 2011, 528(28): 8277 − 8285. doi: 10.1016/j.msea.2011.07.068
|
[16] |
ZHAO E T, SUN S C, YU J R, et al. Dynamic recrystallization and silicide precipitation behavior of titanium matrix composites under different strains[J] . Transactions of Nonferrous Metals Society of China, 2021, 31(11): 3416 − 3427. doi: 10.1016/S1003-6326(21)65739-4
|
[17] |
KANG X D, DU Z X, WANG Z, et al. Efficient access to ultrafine crystalline metastable-β titanium alloy via dual-phase recrystallization competition[J] . Journal of Materials Research and Technology, 2024, 29: 335−343. doi: 10.1016/j.jmrt.2024.01.101
|
[18] |
GUO Y H, NIU J Z, CAO J X, et al. Relative strength of β phase stabilization by transition metals in titanium alloys: the Mo equivalent from a first principles study[J] . Materials Today Communications, 2023, 35: 106123. doi: 10.1016/j.mtcomm.2023.106123
|
[19] |
XU S, ZHANG H M, XIAO N M, et al. Mechanisms of macrozone elimination and grain refinement of near α Ti alloy via the spheroidization of the Widmannstätten structure[J] . Acta Materialia, 2023, 260: 119339. doi: 10.1016/j.actamat.2023.119339
|
[20] |
BALASUNDAR I, RAGHU T, KASHYAP B P. Hot working and geometric dynamic recrystallisation behaviour of a near-α titanium alloy with acicular microstructure[J] . Materials Science and Engineering: A, 2014, 600: 135 − 144. doi: 10.1016/j.msea.2014.01.088
|