Volume 39 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
WANG Xianchao, ZHU Lin, LIU Zhigang, CHEN Yixin. Research on emergency response alertness and operational performance of subway drivers under shift system[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 286-291. doi: 10.12299/jsues.24-0114
Citation: WANG Xianchao, ZHU Lin, LIU Zhigang, CHEN Yixin. Research on emergency response alertness and operational performance of subway drivers under shift system[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 286-291. doi: 10.12299/jsues.24-0114

Research on emergency response alertness and operational performance of subway drivers under shift system

doi: 10.12299/jsues.24-0114
  • Received Date: 2024-04-19
    Available Online: 2025-12-22
  • Publish Date: 2025-09-30
  • The impact of shift system on the emergency response performance and alertness of subway drivers was investigated through simulation experiments. Emergency response performance was measured by the average response time and accuracy rate, while electroencephalogram (EEG) indicators included an alertness index calculated from SMR waves and the average EEG power ratio. Given the special nature of emergency response scenarios, partial gamma (γ) rhythms were incorporated into the calculation of both the alertness index and the average power ratio. The findings indicate that incorporating gamma-band rhythms can enhance the evaluation of changes in subway drivers' alertness levels. Drivers on the day shift exhibited higher alertness and better emergency response performance than those on the night shift. As task complexity increased, emergency response performance declined. Meanwhile alertness showed an trend, initially rising before subsequently falling.
  • loading
  • [1]
    王鹏. 复杂动态监控任务工作负荷的Petri网建模理论及方法研究[D] . 北京: 北京交通大学, 2019.
    [2]
    MAGHSOUDIPOUR M, MORADI R, MOGHIMI S, et al. Time of day, time of sleep, and time on task effects on sleepiness and cognitive performance of bus drivers[J] . Sleep and Breathing, 2022, 26(4): 1759 − 1769. doi: 10.1007/s11325-021-02526-6
    [3]
    汤志华. 基于脑电的警觉度检测方法研究及应用[D] . 天津: 河北工业大学, 2017.
    [4]
    MARDI Z, ASHTIANI S N M, MIKAILI M. EEG-based drowsiness detection for safe driving using chaotic features and statistical tests[J] . Journal of Medical Signals & Sensors, 2011, 1(2): 130 − 137.
    [5]
    周晶晶, 叶继伦, 张旭, 等. 脑电信号分析方法及其应用[J] . 中国医疗器械杂志, 2020, 44(2): 122−126.
    [6]
    范晓丽, 赵朝义, 罗虹, 等. 基于事件相关电位的脑力疲劳评价方法研究[J] . 人类工效学, 2018, 24(5): 1 − 10.
    [7]
    李建泮. 睡眠剥夺者的脑电微状态分析及识别研究[D] . 兰州: 兰州理工大学, 2021.
    [8]
    LIU S, HAO X Y, LIU X Y, et al. Sensorimotor rhythm neurofeedback training relieves anxiety in healthy people[J] . Cognitive Neurodynamics, 2022, 16(3): 531 − 544. doi: 10.1007/s11571-021-09732-8
    [9]
    PÉREZ-ELVIRA R, OLTRA-CUCARELLA J, CARROBLES J A, et al. Enhancing the effects of neurofeedback training: the motivational value of the reinforcers[J] . Brain Sciences, 2021, 11(4): 457. doi: 10.3390/brainsci11040457
    [10]
    卢才武, 徐晓慧, 高睿阳, 等. 热湿环境下矿工注意力对应急决策影响的脑电研究[J] . 安全与环境学报, 2023, 23(10): 3641 − 3647.
    [11]
    PIRONDINI E, COSCIA M, MINGUILLON J, et al. EEG topographies provide subject-specific correlates of motor control[J] . Scientific Reports, 2017, 7(1): 13229. doi: 10.1038/s41598-017-13482-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (20) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return