| Citation: | ZHANG Hongpu, LIU Xiyan, ZHAO Fengzhi, YAN Xiyan, FENG Yan. Improved YOLO-based image segmentation method for AEC welding cup profile[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 366-374. doi: 10.12299/jsues.24-0125 |
| [1] |
王腾, 郁大照, 朱蒙, 等. 海军某型飞机典型电连接器失效分析[J] . 装备环境工程, 2019, 16(12): 28 − 35.
|
| [2] |
杨奋为. 电连接器行业基础共性技术展望[J] . 机电元件, 2023, 43(6): 53 − 60,63. doi: 10.3969/j.issn.1000-6133.2023.06.015
|
| [3] |
牛步钊, 唐春燕, 杨存平, 等. 轨道交通装备用电连接器典型失效类型分析[J] . 智慧轨道交通, 2023, 60(3): 67 − 71. doi: 10.3969/j.issn.2097-0366.2023.03.013
|
| [4] |
童宣科. 基于图像处理的航空电连接器识别与焊点定位技术研究[D] . 桂林: 桂林电子科技大学, 2018.
|
| [5] |
孙逸鹤. 基于机器视觉电连接器自动焊接技术研究[D] . 桂林: 桂林电子科技大学, 2018.
|
| [6] |
单根立, 董沛森. 基于工业PC和PLC的圆形电连接器与多芯电缆自动焊接设备设计[J] . 机床与液压, 2020, 48(2): 94 − 97. doi: 10.3969/j.issn.1001-3881.2020.02.021
|
| [7] |
SONG L M, KANG J W, ZHANG Q L, et al. A weld feature points detection method based on improved YOLO for welding robots in strong noise environment[J] . Signal, Image and Video Processing, 2023, 17(5): 1801 − 1809. doi: 10.1007/s11760-022-02391-0
|
| [8] |
GAO A, FAN Z X, LI A N, et al. YOLO-Weld: a modified YOLOv5-based weld feature detection network for extreme weld noise[J] . Sensors, 2023, 23(12): 5640. doi: 10.3390/s23125640
|
| [9] |
LI M, HUANG J, XUE L, et al. A guidance system for robotic welding based on an improved YOLOv5 algorithm with a RealSense depth camera[J] . Scientific Reports, 2023, 13(1): 21299.
|
| [10] |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C] //Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1577 − 1586.
|
| [11] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C] //Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 3 − 19.
|
| [12] |
YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C] //Proceedings of the 38th International Conference on Machine Learning. [S.l.] : PMLR, 2021: 11863 − 11874.
|
| [13] |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C] //Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531 − 11539.
|
| [14] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132 − 7141.
|
| [15] |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C] //Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018: 122 − 138.
|
| [16] |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1314 − 1324.
|
| [17] |
CHEN C P, GUO Z C, ZENG H E, et al. RepGhost: a hardware-efficient ghost module via reparameteri-zation[EB/OL] . (2022-11-11)[2024-01-31] . https://doi.org/10.48550/arXiv.2211.06088.
|