| Citation: | ZHANG Qi, YIN Zhixiang, LU Lin. Predicting drug-target interactions based on dynamic multi-grained scanning[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 354-359. doi: 10.12299/jsues.24-0143 |
| [1] |
SCHOMBURG I, CHANG A, PLACZEK S, et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA[J] . Nucleic Acids Research, 2013, 41: D764 − D772.
|
| [2] |
LOTFI SHAHREZA M, GHADIRI N, MOUSAVI S R, et al. A review of network-based approaches to drug repositioning[J] . Briefings in Bioinformatics, 2018, 19(5): 878 − 892. doi: 10.1093/bib/bbx017
|
| [3] |
KANEHISA M, FURUMICHI M, TANABE M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs[J] . Nucleic Acids Research, 2017, 45: D353 − D361. doi: 10.1093/nar/gkw1092
|
| [4] |
LEE I, KEUM J, NAM H. DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences[J] . PLoS Computational Biology, 2019, 15(6): e1007129. doi: 10.1371/journal.pcbi.1007129
|
| [5] |
RU X Q, YE X C, SAKURAI T, et al. Current status and future prospects of drug–target interaction prediction[J] . Briefings in Functional Genomics, 2021, 20(5): 312 − 322. doi: 10.1093/bfgp/elab031
|
| [6] |
LIU Y, WU M, MIAO C Y, et al. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction[J] . PLoS Computational Biology, 2016, 12(2): e1004760. doi: 10.1371/journal.pcbi.1004760
|
| [7] |
O'CONNELL M J, LOCK E F. Linked matrix factorization[J] . Biometrics, 2019, 75(2): 582 − 592. doi: 10.1111/biom.13010
|
| [8] |
GIRYES R, SAPIRO G, BRONSTEIN A M. Deep neural networks with random Gaussian weights: a universal classification strategy?[J] . IEEE Transactions on Signal Processing, 2015, 64: 3444 − 3457. doi: 10.1109/TSP.2019.2961228
|
| [9] |
BLEAKLEY K, YAMANISHI Y. Supervised prediction of drug-target interactions using bipartite local models[J] . Bioinformatics, 2009, 25(18): 2397 − 2403. doi: 10.1093/bioinformatics/btp433
|
| [10] |
YAMANISHI Y, KOTERA M, KANEHISA M, et al. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework[J] . Bioinformatics, 2010, 26(12): i246 − i254. doi: 10.1093/bioinformatics/btq176
|
| [11] |
白茹, 滕奇志, 杨晓敏, 等. 基于SVM和GA的药物与人血清白蛋白结合的预测[J] . 计算机工程与应用, 2009, 45(12): 226 − 228, 248. doi: 10.3778/j.issn.1002-8331.2009.12.072
|
| [12] |
GÖNEN M. Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization[J] . Bioinformatics, 2012, 28(18): 2304 − 2310. doi: 10.1093/bioinformatics/bts360
|
| [13] |
YAN X, YOU Z H, WANG L, et al. DTIFS: a novel computational approach for predicting drug-target inter-actions from drug structure and protein sequence[C] //Proceedings of the 16th International Conference on Intelligent Computing Theories and Application. Bari: Springer, 2020: 371 − 383.
|
| [14] |
LIAN M J, DU W L, WANG X J, et al. Drug-target interaction prediction based on multi-similarity fusion and sparse dual-graph regularized matrix factorization[J] . IEEE Access, 2021, 9: 99718 − 99730. doi: 10.1109/ACCESS.2021.3096830
|
| [15] |
章新友, 王芝, 张春强, 等. 相似性算法在药物−靶点预测研究中的应用[J] . 中国新药杂志, 2024, 33(9): 885 − 894. doi: 10.3969/j.issn.1003-3734.2024.09.007
|
| [16] |
WANG Y C, YANG Z X, WANG Y, et al. Computationally probing drug-protein interactions via support vector machine[J] . Letters in Drug Design & Discovery, 2010, 7(5): 370 − 378.
|
| [17] |
刘文昌, 魏赟, 袁浩轩, 等. 基于SMOTE和gcForest的医疗小样本数据分类研究[J] . 物联网学报, 2023, 7(2): 76 − 87. doi: 10.11959/j.issn.2096-3750.2023.00337
|
| [18] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J] . Journal of Artificial Intelligence Research, 2002, 16: 321 − 357. doi: 10.1613/jair.953
|
| [19] |
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M] . Cambridge: The MIT Press, 2016: 216.
|
| [20] |
ZHOU Z H, FENG J. Deep forest: towards an alternative to deep neural networks[C] // Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: ACM, 2017: 3553 − 3559.
|
| [21] |
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features[C] //Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM, 2018: 6639 − 6649.
|
| [22] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785 − 794.
|
| [23] |
CORTES C, VAPNIK V. Support-vector networks[J] . Machine Learning, 1995, 20(3): 273 − 297.
|
| [24] |
HO T K. Random decision forests[C] //Proceedings of 3rd International Conference on Document Analysis and Recognition. Montreal: IEEE, 1995: 278 − 282.
|
| [25] |
PENG Y, ZHAO S W, ZENG Z L, et al. LGBMDF: a cascade forest framework with LightGBM for predicting drug-target interactions[J] . Frontiers in Microbiology, 2022, 13: 1092467. doi: 10.3389/fmicb.2022.1092467
|
| [26] |
AN Q, YU L. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions[J] . Briefings in Bioinformatics, 2021, 22(6): 1 − 10. doi: 10.1093/bib/bbab275
|