Volume 39 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
CHEN Weiqian, GUO Hui, FU Wei, SUN Pei, WANG Yansong. Forward-reverse design method for acoustic metamaterial plates based on neural networks[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 347-353, 374. doi: 10.12299/jsues.24-0163
Citation: CHEN Weiqian, GUO Hui, FU Wei, SUN Pei, WANG Yansong. Forward-reverse design method for acoustic metamaterial plates based on neural networks[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 347-353, 374. doi: 10.12299/jsues.24-0163

Forward-reverse design method for acoustic metamaterial plates based on neural networks

doi: 10.12299/jsues.24-0163
  • Received Date: 2024-06-07
    Available Online: 2025-12-22
  • Publish Date: 2025-09-30
  • As an artificial composite structure, an acoustic metamaterial plate (AMP) can block the propagation of the elastic wave within specific frequency ranges. Due to the combined effects of multiple mechanisms in the composite structure, it is difficult to derive and express the physical properties using theoretical formulas. An AMP structure based on local resonance mechanism was proposed, and the bandgap characteristics were analyzed using finite element method, to obtain different cell structure parameters and corresponding bandgap characteristics. A sample set of the relationship between the structure parameters and corresponding bandgap characteristics was established for the AMP. A forward neural network model was designed to obtain the mapping relationship between structural parameters and bandgap range, and the forward prediction of the corresponding bandgap range by inputting structural parameters can be achieved. On this basis, a reverse neural network was proposed, and the reverse design can be carried out to obtain the structural parameters of AMP aiming the required bandgap range. The simulation results show that complex and cumbersome theoretical derivation and calculation can be avoided with the forward-reverse design method for AMP, which is helpful to promote further development of acoustic metamaterials.
  • loading
  • [1]
    IBRAHIM R A. Recent advances in nonlinear passive vibration isolators[J] . Journal of Sound and Vibration, 2008, 314(3/4/5): 371 − 452.
    [2]
    GRIPP J A B, RADE D A. Vibration and noise control using shunted piezoelectric transducers:a review[J] . Mechanical Systems and Signal Processing, 2018, 112: 359 − 383.
    [3]
    吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J] .机械工程学报, 2016, 52(13): 68 − 78.
    [4]
    CAI W S, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials[J] . Nature Photonics, 2007, 1(4): 224 − 227.
    [5]
    LU M H, FENG L, CHEN Y F. Phononic crystals and acoustic metamaterials[J] . Materials Today, 2009, 12(12): 34 − 42. doi: 10.1016/S1369-7021(09)70315-3
    [6]
    MA G C, SHENG P. Acoustic metamaterials: from local resonances to broad horizons[J] . Science Advances, 2016, 2(2): e1501595.
    [7]
    KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J] . Physical Review Letters, 1993, 71(13): 2022 − 2025. doi: 10.1103/PhysRevLett.71.2022
    [8]
    刘松, 罗春荣, 翟世龙, 等. 负质量密度声学超材料的反常多普勒效应[J] . 物理学报, 2017, 66(2): 208-212.
    [9]
    CROËNNE C, LEE E J S, HU H F, et al. Band gaps in phononic crystals: generation mechanisms and interaction effects[J] . AIP Advances, 2011, 1(4): 041401. doi: 10.1063/1.3675797
    [10]
    POPA B I, CUMMER S A. Non-reciprocal and highly nonlinear active acoustic metamaterials[J] . Nature Communications, 2014, 5(1): 3398. doi: 10.1038/ncomms4398
    [11]
    MALDOVAN M. Sound and heat revolutions in phononics[J] . Nature, 2013, 503(7475): 209 − 217.
    [12]
    温熙森, 温激泓, 郁殿龙, 等. 声子晶体[M] . 北京: 国防工业出版社, 2009.
    [13]
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J] . Science, 2000, 289(8): 1734 − 1736. doi: 10.1126/science.289.5485.1734
    [14]
    倪旭, 张小柳, 卢明辉, 等. 声子晶体和声学超构材料[J] . 物理, 2012, 41(10): 655 − 662.
    [15]
    柯满竹, 邱春印, 彭莎莎, 等. 声学超构材料[J] . 物理, 2012, 41(10): 663 − 668.
    [16]
    LANGFELDT F, KHATOKAR A J, GLEINE W. Plate-type acoustic metamaterials with integrated Helmholtz resonators[J] . Applied Acoustics, 2022, 199: 109019. doi: 10.1016/j.apacoust.2022.109019
    [17]
    YANG X H, KANG Y Z, XIE X X, et al. Multilayer coupled plate-type acoustic metamaterials for low-frequency broadband sound insulation[J] . Applied Acoustics, 2023, 209: 109399.
    [18]
    GAO W L, HU J X, QIN Z Y, et al. Flexural wave manipulation in perforated metamaterial plates with acoustic black holes interconnected by piezoelectric studs[J] . Composite Structures, 2023, 321: 117224. doi: 10.1016/j.compstruct.2023.117224
    [19]
    ANG L Y L, KOH Y K, LEE H P. Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss[J] . Applied Physics Letters, 2018, 112(5): 051903. doi: 10.1063/1.5019602
    [20]
    YU D L, WEN J H, ZHAO H G, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid[J] . Journal of Sound and Vibration, 2008, 318(1/2): 193 − 205.
    [21]
    HOU Z L, ASSOUAR B M. Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method[J] . Physics Letters A, 2008, 372(12): 2091 − 2097. doi: 10.1016/j.physleta.2007.10.080
    [22]
    KUSHWAHA M S, HALEVI P, MARTÍNEZ G, et al. Theory of acoustic band structure of periodic elastic composites[J] . Physical Review B, 1994, 49(4): 2313 − 2322. doi: 10.1103/PhysRevB.49.2313
    [23]
    TANAKA Y, TAMURA S I. Band structures of acoustic waves in phononic lattices[J] . Physica B: Condensed Matter, 2002, 316/317: 237 − 239. doi: 10.1016/S0921-4526(02)00473-8
    [24]
    GAUTHIER R C, MNAYMNEH K. Photonic band gap properties of 12-fold quasi-crystal determined through FDTD analysis[J] . Optics Express, 2005, 13(6): 1985 − 1998. doi: 10.1364/OPEX.13.001985
    [25]
    SAINIDOU R, STEFANOU N, PSAROBAS I E, et al. A layer-multiple-scattering method for phononic crystals and heterostructures of such[J] . Computer Physics Communications, 2005, 166(3): 197 − 240. doi: 10.1016/j.cpc.2004.11.004
    [26]
    KHELIF A, AOUBIZA B, MOHAMMADI S, et al. Complete band gaps in two-dimensional phononic crystal slabs[J] . Physical Review E, 2006, 74(4): 046610.
    [27]
    CHEN P Y, CHEN C H, WANG H, et al. Synthesis design of artificial magnetic metamaterials using a genetic algorithm[J] . Optics Express, 2008, 16(17): 12806 − 12818. doi: 10.1364/OE.16.012806
    [28]
    QIU T S, SHI X, WANG J F, et al. Deep learning: a rapid and efficient route to automatic metasurface design[J] . Advanced Science, 2019, 6(12): 1900128. doi: 10.1002/advs.201900128
    [29]
    WILT J K, YANG C, GU G X. Accelerating auxetic metamaterial design with deep learning[J] . Advanced Engineering Materials, 2020, 22(5): 2070018. doi: 10.1002/adem.202070018
    [30]
    HOU Z Y, ZHANG P Y, GE M F, et al. Metamaterial reverse multiple prediction method based on deep learning[J] . Nanomaterials, 2021, 11(10): 2672. doi: 10.3390/nano11102672
    [31]
    WANG H, XIAO S H, ZHANG C. Novel planar auxetic metamaterial perforated with orthogonally aligned oval-shaped holes and machine learning solutions[J] . Advanced Engineering Materials, 2021, 23(7): 2100102.
    [32]
    LI J, GUO H, SUN P, et al. Topology optimization of anisotropy hierarchical honeycomb acoustic metamaterials for extreme multi-broad band gaps[J] . Mechanics of Advanced Materials and Structures, 2023, 30(17): 3540 − 3552. doi: 10.1080/15376494.2022.2079027
    [33]
    LIAO Z Y, WANG Y J, GAO L, et al. Deep-learning-based isogeometric inverse design for tetra-chiral auxetics[J] . Composite Structures, 2022, 280: 114808.
    [34]
    KOLLMANN H T, ABUEIDDA D W, KORIC S, et al. Deep learning for topology optimization of 2D metamaterials[J] . Materials & Design, 2020, 196: 109098.
    [35]
    ZILETTI A, KUMAR D, SCHEFFLER M, et al. Insightful classification of crystal structures using deep learning[J] . Nature Communications, 2018, 9(1): 2775. doi: 10.1038/s41467-018-05169-6
    [36]
    贾高锋. 二维周期性结构带隙计算的有限元法[D] . 北京: 北京交通大学, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (23) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return