Volume 39 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
LIU Fangji, ZHOU Yufeng. Aperture compensation method based on projection error[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 314-319. doi: 10.12299/jsues.24-0165
Citation: LIU Fangji, ZHOU Yufeng. Aperture compensation method based on projection error[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 314-319. doi: 10.12299/jsues.24-0165

Aperture compensation method based on projection error

doi: 10.12299/jsues.24-0165
  • Received Date: 2024-06-06
    Available Online: 2025-12-22
  • Publish Date: 2025-09-30
  • To address the errors caused by the non-coincidence of the hole surface with the calibration plane in machine vision-based aperture measurement, as well as the edge degradation encountered during edge extraction, an aperture diameter compensation method based on perspective projection error was proposed. Edge detection was performed using an adaptive median filtering algorithm, and the aperture diameter was determined by employing quadratic curve invariant. Perspective projection error was then introduced to obtain the corrected hole diameter. A visual inspection experimental platform was constructed, and the test results demonstrate that the proposed compensation method achieves a measurement error within ± 0.002 mm, and a measurement accuracy of 0.001 mm. The method demonstrates a better compensation effect and can meet the enterprise's accuracy requirements.
  • loading
  • [1]
    LI B. Application of machine vision technology in geometric dimension measurement of small parts[J] . Eurasip Journal on Image and Video Processing, 2018, 2018(1): 127. doi: 10.1186/s13640-018-0364-9
    [2]
    JOSHI K D, CHAUHAN V, SURGENOR B. A flexible machine vision system for small part inspection based on a hybrid SVM/ANN approach[J] . Journal of Intelligent Manufacturing, 2020, 31(1): 103 − 125. doi: 10.1007/s10845-018-1438-3
    [3]
    BENBARRAD T, SALHAOUI M, KENITAR S B, et al. Intelligent machine vision model for defective product inspection based on machine learning[J] . Journal of Sensor and Actuator Networks, 2021, 10(1): 7. doi: 10.3390/jsan10010007
    [4]
    ZHANG W, HAN Z W, LI Y, et al. A method for measurement of workpiece form deviations based on machine vision[J] . Machines, 2022, 10(8): 718. doi: 10.3390/machines10080718
    [5]
    朱云, 凌志刚, 张雨强. 机器视觉技术研究进展及展望[J] . 图学学报, 2020, 41(6): 871 − 890.
    [6]
    焦博, 刘国宁, 赵孟轩, 等. 基于机器视觉的亚像素精度法兰盘尺寸测量方法[J] . 现代制造工程, 2022(7): 121 − 126.
    [7]
    ZHANG X Y, YU C Z, QIU Z S, et al. Noncontact high-precision aperture detection based on distortion compensation and adaptive mean blur algorithm[J] . IEEE Transactions on Instrumentation and Measurement, 2023, 72: 5014410.
    [8]
    张函力, 李海伟, 于国栋, 等. 基于改进Zernike矩的铆接孔径亚像素检测方法研究[J] . 航空制造技术, 2022, 65(18): 98 − 104.
    [9]
    孙钊, 许增朴, 王永强, 等. 机器视觉测量中透视投影误差分析控制与补偿[J] . 计算机工程与应用, 2018, 54(2): 266 − 270. doi: 10.3778/j.issn.1002-8331.1606-0456
    [10]
    ZHANG Z Y. Camera calibration with one-dimensional objects[J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 892 − 899. doi: 10.1109/TPAMI.2004.21
    [11]
    张龙飞, 李晶, 寇莹, 等. 一种基于二次曲线不变量的孔径测量方法[J] . 华南理工大学学报(自然科学版), 2021, 49(5): 129 − 134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (21) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return