Volume 39 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
XUE Hui, ZHANG Zhenshan, ZHANG Yanwei, ZHU Zina, CUI Guohua, LU Shengyao. Map construction for construction robot based on integrated improved algorithm[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 451-457. doi: 10.12299/jsues.24-0169
Citation: XUE Hui, ZHANG Zhenshan, ZHANG Yanwei, ZHU Zina, CUI Guohua, LU Shengyao. Map construction for construction robot based on integrated improved algorithm[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 451-457. doi: 10.12299/jsues.24-0169

Map construction for construction robot based on integrated improved algorithm

doi: 10.12299/jsues.24-0169
  • Received Date: 2024-06-12
    Available Online: 2026-02-02
  • Publish Date: 2025-12-01
  • The construction environment is characterized by unstructured, large workspace, and construction processes that are significantly influenced by on-site conditions. To address problems such as inaccurate pose estimation, incomplete map display, and more residual shadows in highly dynamic scenes during construction robot localization and mapping, multiple sensors including dual LiDAR, inertial measurement unit (IMU), and wheeled odometry were fused. Based on the Cartographer algorithm framework, an extended Kalman filter was employed to optimize the multi-sensor for more accurate pose estimation. Furthermore, dynamic obstacle point clouds were filtered and removed from the raw laser scan data to enhance mapping quality. Experimental results show that the proposed improved data fusion Cartographer algorithm can improve map quality and positioning accuracy, meeting the requirements for map construction in construction environment.
  • loading
  • [1]
    DAVILA DELGADO J M, OYEDELE L, AJAYI A, et al. Robotics and automated systems in construction: understand ingindustry-specific challenges for adoption[J] . Journal of Building Engineering, 2019, 26: 100868. doi: 10.1016/j.jobe.2019.100868
    [2]
    WANG X, WANG S Q, MENASSA C C, et al. Automatic high-level motion sequencing methods for enabling multi-tasking construction robots[J] . Automation in Construction, 2023, 155: 105071. doi: 10.1016/j.autcon.2023.105071
    [3]
    CAI J N, DU A, LIANG X Y, et al. Prediction-based path planning for safe and efficient human–robot collaboration in construction via deep reinforcement learning[J] . Journal of Computing in Civil Engineering, 2023, 37(1): 04022046. doi: 10.1061/(ASCE)CP.1943-5487.0001056
    [4]
    FENG C, XIAO Y, WILLETTE A, et al. Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites[J] . Automation in Construction, 2015, 59: 128 − 138. doi: 10.1016/j.autcon.2015.06.002
    [5]
    LUNDEEN K M, KAMAT V R, MENASSA C C, et al. Scene understanding for adaptive manipulation in robotized construction work[J] . Automation in Construction, 2017, 82: 16 − 30. doi: 10.1016/j.autcon.2017.06.022
    [6]
    PAN M, LINNER T, PAN W, et al. Influencing factors of the future utilisation of construction robots for buildings: a Hong Kong perspective[J] . Journal of Building Engineering, 2020, 30: 101220. doi: 10.1016/j.jobe.2020.101220
    [7]
    LIANG C J, KAMAT V R, MENASSA C C. Teaching robots to perform quasi-repetitive construction tasks through human demonstration[J] . Automation in Construction, 2020, 120: 103370. doi: 10.1016/j.autcon.2020.103370
    [8]
    YAROVOI A, CHO Y K. Review of simultaneous localization and mapping (SLAM) for construction robotics applications[J] . Automation in Construction, 2024, 162: 105344. doi: 10.1016/j.autcon.2024.105344
    [9]
    刘铭哲, 徐光辉, 唐堂, 等. 激光雷达SLAM算法综述[J] . 计算机工程与应用, 2024, 60(1): 1 − 14.
    [10]
    SHAN T X, ENGLOT B, MEYERS D, et al. LIO-SAM: tightly-coupled lidar inertial odometry via smoothing and mapping[C] //2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas: IEEE, 2020: 5135 − 5142.
    [11]
    帅子沛. 室内建筑抹灰机器人智能导航研究[D] . 成都: 电子科技大学, 2022: 18 − 30.
    [12]
    周乐天. 建筑机器人移动定位技术研究[D] . 成都: 电子科技大学, 2019: 20 − 28.
    [13]
    沈欣. 基于改进Cartographer的激光SLAM算法研究[D] . 武汉: 武汉科技大学, 2021: 16 − 28.
    [14]
    徐淑萍, 杨定哲, 熊小墩. 多传感器融合的室内机器人SLAM[J] . 西安工业大学学报, 2024, 44(1): 93 − 103.
    [15]
    LI L, SCHULZE L, KALAVADIA K. Promising SLAM methods for automated guided vehicles and autonomous mobile robots[J] . Procedia Computer Science, 2024, 232: 2867 − 2874. doi: 10.1016/j.procs.2024.02.103
    [16]
    徐淑萍, 杨定哲, 房嘉翔, 等. 一种改进Cartographer算法的建图方法研究[J] . 激光杂志, 2024, 45(10): 86 − 93.
    [17]
    ALTINPINAR O V, SEZER V. A novel indoor localization algorithm based on a modified EKF using virtual dynamic point landmarks for 2D grid maps[J] . Robotics and Autonomous Systems, 2023, 170: 104546. doi: 10.1016/j.robot.2023.104546
    [18]
    KUTI J, PIRICZ T, GALAMBOS P. Method for direction and orientation tracking using IMU sensor[J] . IFAC-PapersOnLine, 2023, 56(2): 10774 − 10780. doi: 10.1016/j.ifacol.2023.10.744
    [19]
    PRZYBYŁA M. Detection and tracking of 2D geometric obstacles from LRF data[C] //Proceedings of 2017 11th International Workshop on Robot Motion and Control (RoMoCo). Wasowo Palace: IEEE, 2017: 135 − 141.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (13) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return