| Citation: | LI Shuaishuai, HUANG Qiannan, LI Wenyao. Zinc-ion hybrid supercapacitor based on activated carbon cathode material[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 409-413, 484. doi: 10.12299/jsues.24-0179 |
| [1] |
SHAO Y L, EL-KADY M F, SUN J Y, et al. Design and mechanisms of asymmetric supercapacitors[J] . Chemical Reviews, 2018, 118(18): 9233 − 9280. doi: 10.1021/acs.chemrev.8b00252
|
| [2] |
FORGHANI M, DONNE S W. Method comparison for deconvoluting capacitive and pseudo-capacitive contributions to electrochemical capacitor electrode behavior[J] . Journal of the Electrochemical Society, 2018, 165(3): A664 − A673. doi: 10.1149/2.0931803jes
|
| [3] |
韩亚伟, 姜挥, 付强, 等. 超级电容器国内外应用现状研究[J] . 上海节能, 2021(1): 43 − 52.
|
| [4] |
QU Q T, ZHANG P, WANG B, et al. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors[J] . The Journal of Physical Chemistry C, 2009, 113(31): 14020 − 14027. doi: 10.1021/jp8113094
|
| [5] |
CHEN P C, SHEN G Z, SHI Y, et al. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes[J] . ACS Nano, 2010, 4(8): 4403 − 4411. doi: 10.1021/nn100856y
|
| [6] |
TANG Z, TANG C H, GONG H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes[J] . Advanced Functional Materials, 2012, 22(6): 1272 − 1278. doi: 10.1002/adfm.201102796
|
| [7] |
YUAN C Z, LI J Y, HOU L R, et al. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors[J] . Advanced Functional Materials, 2012, 22(21): 4592 − 4597. doi: 10.1002/adfm.201200994
|
| [8] |
LUO J M, FANG C, JIN C B, et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors[J] . Journal of Materials Chemistry A, 2018, 6(17): 7794 − 7806. doi: 10.1039/C8TA02068J
|