| Citation: | ZHANG Meihua, TAO Ran. Data driven health monitoring and fault diagnosis of mechanical equipment[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 435-441. doi: 10.12299/jsues.24-0180 |
| [1] |
雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J] . 机械工程学报, 2018, 54(5): 94 − 104.
|
| [2] |
GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[M] //KAHLEN F J, FLUMERFELT S, ALVES A. Transdisciplinary perspectives on complex systems. Cham: Springer, 2017: 85−113.
|
| [3] |
陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J] . 计算机集成制造系统, 2019, 25(1): 1 − 18.
|
| [4] |
陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J] . 计算机集成制造系统, 2021, 27(1): 1 − 15.
|
| [5] |
SARACCO R. Digital twins: bridging physical space and cyberspace[J] . Computer, 2019, 52(12): 58 − 64.
|
| [6] |
COHEN Y, PILATI F, FACCIO M. Digitization of assembly line for complex products-the digital nursery of workpiece digital twins[J] . IFAC-PapersOnLine, 2021, 54(1): 158 − 162. doi: 10.1016/j.ifacol.2021.08.018
|
| [7] |
杨俊峰, 王红军, 冯昊天, 等. 基于数字孪生模型的设备故障诊断技术[J] . 设备管理与维修, 2021(9): 128 − 130.
|
| [8] |
孙元亮, 马文茂, 张超, 等. 面向数字孪生的智能生产线监控系统关键技术研究[J] . 航空制造技术, 2021, 64(8): 58 − 65.
|
| [9] |
武颖, 姚丽亚, 熊辉, 等. 基于数字孪生技术的复杂产品装配过程质量管控方法[J] . 计算机集成制造系统, 2019, 25(6): 1568 − 1575.
|
| [10] |
SULEIMENOV B A, SUGUROVA L A, SULEIMENOV A B, et al. Synthesis of the equipment health management system of the turbine units' of thermal power stations[J] . Mechanics & Industry, 2018, 19(2): 209.
|
| [11] |
DINARDO G, FABBIANO L, VACCA G. A smart and intuitive machine condition monitoring in the Industry 4.0 scenario[J] . Measurement, 2018, 126: 1 − 12. doi: 10.1016/j.measurement.2018.05.041
|
| [12] |
MANIKANDAN S, DURAIVELU K. Fault diagnosis of various rotating equipment using machine learning approaches-a review[J] . Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235(2): 629-642.
|
| [13] |
HONG G, SUH D. Supervised-learning-based intelligent fault diagnosis for mechanical equipment[J] . IEEE Access, 2021, 9: 116147 − 116162. doi: 10.1109/ACCESS.2021.3104189
|
| [14] |
赖英旭, 刘静, 刘增辉, 等. 工业控制系统脆弱性分析及漏洞挖掘技术研究综述[J] . 北京工业大学学报, 2020, 46(6): 571 − 582.
|
| [15] |
UR-REHMAN A, GONDAL I, KAMRUZZAMAN J, et al. Vulnerability modeling for hybrid industrial control system networks[J] . Journal of Grid Computing, 2020, 18(4): 863 − 878. doi: 10.1007/s10723-020-09528-w
|
| [16] |
ALONSO M, TURANZAS J, AMARIS H, et al. Cyber-physical vulnerability assessment in smart grids based on multilayer complex networks[J] . Sensors, 2021, 21(17): 5826. doi: 10.3390/s21175826
|
| [17] |
GAO G B, ZHOU D M, TANG H, et al. An intelligent health diagnosis and maintenance decision-making approach in smart manufacturing[J] . Reliability Engineering & System Safety, 2021, 216: 107965.
|
| [18] |
高贵兵, 王俊深, 岳文辉, 等. 基于脆弱性的制造设备故障智能诊断与维护[J] . 机械工程学报, 2020, 56(23): 141 − 149.
|