Volume 39 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
ZHANG Meihua, TAO Ran. Data driven health monitoring and fault diagnosis of mechanical equipment[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 435-441. doi: 10.12299/jsues.24-0180
Citation: ZHANG Meihua, TAO Ran. Data driven health monitoring and fault diagnosis of mechanical equipment[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 435-441. doi: 10.12299/jsues.24-0180

Data driven health monitoring and fault diagnosis of mechanical equipment

doi: 10.12299/jsues.24-0180
  • Received Date: 2024-06-20
    Available Online: 2026-02-02
  • Publish Date: 2025-12-01
  • To address the incomplete utilization of mechanical equipment fault data and overcome the limitations of traditional health status monitoring and fault diagnosis methods, a data-driven system architecture for health monitoring and fault diagnosis was constructed. A health status monitoring method based on digital twins was proposed, in which equipment vulnerability was incorporated to monitor the health status. Furthermore, a data-driven fault diagnosis method was studied. By utilizing a nonlinear kernel mapping algorithm, historical fault data were analyzed to determine the abnormal boundary of the equipment. Through the analysis of real-time data, equipment abnormalities and the key factors leading to these abnormalities were identified. Finally, an empirical analysis was conducted taking a robotic arm on an assembly line as a case study. The results indicate that the proposed method can effectively identify the performance parameters leading to equipment abnormalities and improve the dynamic response performance of the workshop to machine failures.
  • loading
  • [1]
    雷亚国, 贾峰, 孔德同, 等. 大数据下机械智能故障诊断的机遇与挑战[J] . 机械工程学报, 2018, 54(5): 94 − 104.
    [2]
    GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems[M] //KAHLEN F J, FLUMERFELT S, ALVES A. Transdisciplinary perspectives on complex systems. Cham: Springer, 2017: 85−113.
    [3]
    陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J] . 计算机集成制造系统, 2019, 25(1): 1 − 18.
    [4]
    陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J] . 计算机集成制造系统, 2021, 27(1): 1 − 15.
    [5]
    SARACCO R. Digital twins: bridging physical space and cyberspace[J] . Computer, 2019, 52(12): 58 − 64.
    [6]
    COHEN Y, PILATI F, FACCIO M. Digitization of assembly line for complex products-the digital nursery of workpiece digital twins[J] . IFAC-PapersOnLine, 2021, 54(1): 158 − 162. doi: 10.1016/j.ifacol.2021.08.018
    [7]
    杨俊峰, 王红军, 冯昊天, 等. 基于数字孪生模型的设备故障诊断技术[J] . 设备管理与维修, 2021(9): 128 − 130.
    [8]
    孙元亮, 马文茂, 张超, 等. 面向数字孪生的智能生产线监控系统关键技术研究[J] . 航空制造技术, 2021, 64(8): 58 − 65.
    [9]
    武颖, 姚丽亚, 熊辉, 等. 基于数字孪生技术的复杂产品装配过程质量管控方法[J] . 计算机集成制造系统, 2019, 25(6): 1568 − 1575.
    [10]
    SULEIMENOV B A, SUGUROVA L A, SULEIMENOV A B, et al. Synthesis of the equipment health management system of the turbine units' of thermal power stations[J] . Mechanics & Industry, 2018, 19(2): 209.
    [11]
    DINARDO G, FABBIANO L, VACCA G. A smart and intuitive machine condition monitoring in the Industry 4.0 scenario[J] . Measurement, 2018, 126: 1 − 12. doi: 10.1016/j.measurement.2018.05.041
    [12]
    MANIKANDAN S, DURAIVELU K. Fault diagnosis of various rotating equipment using machine learning approaches-a review[J] . Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235(2): 629-642.
    [13]
    HONG G, SUH D. Supervised-learning-based intelligent fault diagnosis for mechanical equipment[J] . IEEE Access, 2021, 9: 116147 − 116162. doi: 10.1109/ACCESS.2021.3104189
    [14]
    赖英旭, 刘静, 刘增辉, 等. 工业控制系统脆弱性分析及漏洞挖掘技术研究综述[J] . 北京工业大学学报, 2020, 46(6): 571 − 582.
    [15]
    UR-REHMAN A, GONDAL I, KAMRUZZAMAN J, et al. Vulnerability modeling for hybrid industrial control system networks[J] . Journal of Grid Computing, 2020, 18(4): 863 − 878. doi: 10.1007/s10723-020-09528-w
    [16]
    ALONSO M, TURANZAS J, AMARIS H, et al. Cyber-physical vulnerability assessment in smart grids based on multilayer complex networks[J] . Sensors, 2021, 21(17): 5826. doi: 10.3390/s21175826
    [17]
    GAO G B, ZHOU D M, TANG H, et al. An intelligent health diagnosis and maintenance decision-making approach in smart manufacturing[J] . Reliability Engineering & System Safety, 2021, 216: 107965.
    [18]
    高贵兵, 王俊深, 岳文辉, 等. 基于脆弱性的制造设备故障智能诊断与维护[J] . 机械工程学报, 2020, 56(23): 141 − 149.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (11) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return