| Citation: | ZHANG Hongwei, YUAN Zihou, DU Yanming, ZHENG Xingren. Research on prediction of vehicle drag coefficient based on machine learning[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 382-388. doi: 10.12299/jsues.24-0187 |
| [1] |
ROSTAMZADEH-RENANI M, BAGHOOLIZADEH M, SAJADI S M, et al. A multi-objective and CFD based optimization of roof-flap geometry and position for simultaneous drag and lift reduction[J] . Propulsion and Power Research, 2024, 13(1): 26 − 45. doi: 10.1016/j.jppr.2024.02.004
|
| [2] |
GUNPINAR E, COSKUN U C, OZSIPAHI M, et al. A generative design and drag coefficient prediction system for Sedan car side silhouettes based on computational fluid dynamics[J] . Computer-Aided Design, 2019, 111: 65 − 79. doi: 10.1016/j.cad.2019.02.003
|
| [3] |
ANDRÉS-PÉREZ E, PAULETE-PERIÁÑEZ C. On the application of surrogate regression models for aerodynamic coefficient prediction[J] . Complex & Intelligent Systems, 2021, 7(4): 1991 − 2021.
|
| [4] |
姜丰, 李卓, 汪怡平. 基于GA-BP神经网络的汽车空气阻力系数预测研究[J] . 汽车工程学报, 2023, 13(5): 730 − 738.
|
| [5] |
侯卜瑛, 赵萌, 刘印桢, 等. 不同侧风角作用下Ahmed模型空气动力学特性分析[J] . 科学技术与工程, 2024, 24(2): 465 − 471.
|
| [6] |
许建民, 龚晓岩, 郑庆杰, 等. 基于联接式通道的厢式货车减阻性能仿真研究[J] . 汽车安全与节能学报, 2023, 14(6): 774 − 782.
|
| [7] |
张勇, 石佳琦, 谷正气, 等. 尾部特征参数对气动阻力交互影响与全局优化研究[J] . 湖南大学学报(自然科学版), 2020, 47(2): 14 − 20.
|
| [8] |
JIANG Q H, ZHU L L, SHU C, et al. An efficient multilayer RBF neural network and its application to regression problems[J] . Neural Computing and Applications, 2022, 34(6): 4133 − 4150. doi: 10.1007/s00521-021-06373-0
|
| [9] |
GAVEL A, ANDRAE R, FOUESNEAU M, et al. Estimating [α/Fe] from Gaia low-resolution BP/RP spectra using the ExtraTrees algorithm[J] . Astronomy & Astrophysics, 2021, 656: A93.
|
| [10] |
李笑雪, 张思凝, 王娅娅, 等. 基于树型学习算法的短期流量预测研究[J] . 电子测试, 2021(19): 48 − 50.
|
| [11] |
CHEN T Q, CARLOS G. XGBoost: a scalable tree boosting system[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: Association for Computing Machinery, 2016: 785 − 794.
|
| [12] |
PARK D, CHA J, KIM M, et al. Multi-objective optimization and comparison of surrogate models for separation performances of cyclone separator based on CFD, RSM, GMDH-neural network, back propagation-ANN and genetic algorithm[J] . Engineering Applications of Computational Fluid Mechanics, 2020, 14(1): 180 − 201. doi: 10.1080/19942060.2019.1691054
|
| [13] |
蔡改贫, 罗茜茜, 刘鑫. 基于PSO-LSSVM的Ni-Cr-W-Mo合金本构关系研究[J] . 塑性工程学报, 2020, 27(9): 140 − 146.
|
| [14] |
BAGHERI-ESFEH H, ROSTAMZADEH-RENANI M, ROSTAMZADEH-RENANI R, et al. Multi-objective optimization of drag and lift coefficients of a car integrated with canards[J] . International Journal of Computational Fluid Dynamics, 2020, 34(5): 346 − 362. doi: 10.1080/10618562.2020.1766031
|