Volume 39 Issue 3
Sep.  2025
Turn off MathJax
Article Contents
ZOU Yu, ZHUANG Chunlin, ZHAO Linjing. Advances in synthesis and pharmacological effects of Bardoxolone and its derivatives[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 326-332. doi: 10.12299/jsues.24-0199
Citation: ZOU Yu, ZHUANG Chunlin, ZHAO Linjing. Advances in synthesis and pharmacological effects of Bardoxolone and its derivatives[J]. Journal of Shanghai University of Engineering Science, 2025, 39(3): 326-332. doi: 10.12299/jsues.24-0199

Advances in synthesis and pharmacological effects of Bardoxolone and its derivatives

doi: 10.12299/jsues.24-0199
  • Received Date: 2024-07-07
    Available Online: 2025-12-22
  • Publish Date: 2025-09-30
  • Bardoxolone, also known as 2−cyano−3,12−dioxolanoleana−1,9(11)−dien−28−oic' acid (CDDO), is a pentacyclic triterpenoid synthesized from natural oleanolic acid through a series of chemical modifications. CDDO and its derivatives exhibit a broad pharmacological activities and have shown great potential in studies. In this review, recent advancements in the synthesis of CDDO and its derivatives were summarized. Their pharmacological effects and underlying mechanisms, including antitumor activity, anti-inflammatory properties, neuroprotection, kidney protection, antiviral activity, among others, were also dicussed. This review was conducted to provide valuable insights for the future development and application of these compounds.
  • loading
  • [1]
    PHILLIPS D R, RASBERY J M, BARTEL B, et al. Biosynthetic diversity in plant triterpene cyclization[J] . Current Opinion in Plant Biology, 2006, 9(3): 305 − 314. doi: 10.1016/j.pbi.2006.03.004
    [2]
    BORELLA R, FORTI L, GIBELLINI L, et al. Synthesis and anticancer activity of CDDO and CDDO-Me, two derivatives of natural triterpenoids[J] . Molecules, 2019, 24(22): 4097. doi: 10.3390/molecules24224097
    [3]
    SUH N, WANG Y, HONDA T, et al. A novel synthetic oleanane triterpenoid, 2−cyano−3, 12−dioxoolean−1, 9−dien−28−oic acid, with potent differentiating, antiproliferative, and anti−inflammatory activity[J] . Cancer Research, 1999, 59(2): 336 − 341.
    [4]
    COUCH R D, BROWNING R G, HONDA T, et al. Studies on the reactivity of CDDO, a promising new chemopreventive and chemotherapeutic agent: implications for a molecular mechanism of action[J] . Bioorganic & Medicinal Chemistry Letters, 2005, 15(9): 2215 − 2219.
    [5]
    HONDA T, ROUNDS B V, GRIBBLE G W, et al. Design and synthesis of 2−cyano−3, 12−dioxoolean−1, 9−dien−28−oic acid, a novel and highly active inhibitor of nitric oxide production in mouse macrophages[J] . Bioorganic & Medicinal Chemistry Letters, 1998, 8(19): 2711 − 2714.
    [6]
    FU L F, GRIBBLE G W. Efficient and scalable synthesis of bardoxolone methyl (CDDO-methyl ester)[J] . Organic Letters, 2013, 15(7): 1622 − 1625. doi: 10.1021/ol400399x
    [7]
    SPORN M B, LIBY K T, YORE M M, et al. New synthetic triterpenoids: potent agents for prevention and treatment of tissue injury caused by inflammatory and oxidative stress[J] . Journal of Natural Products, 2011, 74(3): 537 − 545. doi: 10.1021/np100826q
    [8]
    SHANMUGAM M K, DAI X Y, KUMAR A P, et al. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence[J] . Cancer Letters, 2014, 346(2): 206 − 216. doi: 10.1016/j.canlet.2014.01.016
    [9]
    JOHNSON D E, O'KEEFE R A, GRANDIS J R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer[J] . Nature Reviews Clinical Oncology, 2018, 15(4): 234 − 248. doi: 10.1038/nrclinonc.2018.8
    [10]
    GEE M S, KANG S B, KIM N, et al. Bardoxolone methyl suppresses hepatitis B virus large surface protein variant W4P-related carcinogenesis and hepatocellular carcinoma cell proliferation via the inhibition of signal transducer and activator of transcription 3 signaling[J] . Pharmacology, 2018, 102(1/2): 105 − 113.
    [11]
    TORRES G M, YANG H, PARK C, et al. T cells and CDDO-Me attenuate immunosuppressive activation of human melanoma-conditioned macrophages[J] . Frontiers in Immunology, 2022, 13: 768753. doi: 10.3389/fimmu.2022.768753
    [12]
    HAYASHI M, KUGA A, SUZUKI M, et al. Microenvironmental activation of Nrf2 restricts the progression of Nrf2-activated malignant tumors[J] . Cancer Research, 2020, 80(16): 3331 − 3344. doi: 10.1158/0008-5472.CAN-19-2888
    [13]
    YUNNA C, MENGRU H, LEI W, et al. Macrophage M1/M2 polarization[J] . European Journal of Pharmacology, 2020, 877: 173090. doi: 10.1016/j.ejphar.2020.173090
    [14]
    XU F, WEI Y, TANG Z, et al. Tumor-associated macrophages in lung cancer: friend or foe? (Review)[J] . Molecular Medicine Reports, 2020, 22(5): 4107 − 4115.
    [15]
    MOERLAND J A, LEAL A S, LOCKWOOD B, et al. The triterpenoid CDDO-methyl ester redirects macrophage polarization and reduces lung tumor burden in a Nrf2-dependent manner[J] . Antioxidants, 2023, 12(1): 116. doi: 10.3390/antiox12010116
    [16]
    YU L, WEI J, LIU P D. Attacking the PI3K/AKT/mTOR signaling pathway for targeted therapeutic treatment in human cancer[J] . Seminars in Cancer Biology, 2022, 85: 69 − 94. doi: 10.1016/j.semcancer.2021.06.019
    [17]
    GAO X H, DEEB D, LIU Y B, et al. CDDO-Me inhibits tumor growth and prevents recurrence of pancreatic ductal adenocarcinoma[J] . International Journal of Oncology, 2015, 47(6): 2100 − 2106. doi: 10.3892/ijo.2015.3212
    [18]
    ZHANG Y, WANG X. Targeting the Wnt/β-catenin signaling pathway in cancer[J] . Journal of Hematology & Oncology, 2020, 13(1): 165.
    [19]
    ZHOU L, WANG Z Y, YU S B, et al. CDDO-Me elicits anti-breast cancer activity by targeting LRP6 and FZD7 receptor complex[J] . The Journal of Pharmacology and Experimental Therapeutics, 2020, 373(1): 149 − 159. doi: 10.1124/jpet.119.263434
    [20]
    SHISHODIA S, SETHI G, KONOPLEVA M, et al. A synthetic triterpenoid, CDDO-Me, inhibits IκBαkinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor κB-regulated gene products in human leukemic cells[J] . Clinical Cancer Research, 2006, 12(6): 1828 − 1838. doi: 10.1158/1078-0432.CCR-05-2044
    [21]
    ANSELMI A, ABBATE A, GIROLA F, et al. Myocardial ischemia, stunning, inflammation, and apoptosis during cardiac surgery: a review of evidence[J] . European Journal of Cardio-Thoracic Surgery, 2004, 25(3): 304 − 311. doi: 10.1016/j.ejcts.2003.12.003
    [22]
    BALK R A. Systemic inflammatory response syndrome (SIRS): where did it come from and is it still relevant today?[J] . Virulence, 2014, 5(1): 20 − 26. doi: 10.4161/viru.27135
    [23]
    YANG Z H, WU X N, HE P, et al. A non-canonical PDK1-RSK signal diminishes pro-caspase-8-mediated necroptosis blockade[J] . Molecular Cell, 2020, 80(2): 296 − 310.
    [24]
    WU Z M, GENG Y, LU X J, et al. Chaperone-mediated autophagy is involved in the execution of ferroptosis[J] . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(8): 2996 − 3005.
    [25]
    WANG Y Y, MA H, HUANG J X, et al. Discovery of bardoxolone derivatives as novel orally active necroptosis inhibitors[J] . European Journal of Medicinal Chemistry, 2021, 212: 113030. doi: 10.1016/j.ejmech.2020.113030
    [26]
    CHEN X, KANG R, KROEMER G, et al. Ferroptosis in infection, inflammation, and immunity[J] . Journal of Experimental Medicine, 2021, 218(6): e20210518. doi: 10.1084/jem.20210518
    [27]
    MAYR L, GRABHERR F, SCHWÄRZLER J, et al. Dietary lipids fuel GPX4-restricted enteritis resembling Crohn's disease[J] . Nature Communications, 2020, 11(1): 1175. doi: 10.1038/s41467-020-15029-x
    [28]
    XU M Y, TAO J, YANG Y D, et al. Ferroptosis involves in intestinal epithelial cell death in ulcerative colitis[J] . Cell Death & Disease, 2020, 11(2): 86.
    [29]
    ANSARI M Y, AHMAD N, HAQQI T M. Oxidative stress and inflammation in osteoarthritis pathogenesis: role of polyphenols[J] . Biomedicine & Pharmacotherapy, 2020, 129: 110452.
    [30]
    CAI D W, YIN S S, YANG J, et al. Histone deacetylase inhibition activates Nrf2 and protects against osteoarthritis[J] . Arthritis Research & Therapy, 2015, 17(1): 269.
    [31]
    DONG J, ZHANG K J, LI G C, et al. CDDO-Im ameliorates osteoarthritis and inhibits chondrocyte apoptosis in mice via enhancing Nrf2-dependent autophagy[J] . Acta Pharmacologica Sinica, 2022, 43(7): 1793 − 1802. doi: 10.1038/s41401-021-00782-6
    [32]
    KIM J E, KANG T C. CDDO-Me attenuates astroglial autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-mediated signaling pathways in the hippocampus of chronic epilepsy rats[J] . Antioxidants, 2021, 10(5): 655. doi: 10.3390/antiox10050655
    [33]
    PILOTTO F, CHELLAPANDI D M, PUCCIO H. Omaveloxolone: a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia[J] . Trends in Molecular Medicine, 2024, 30(2): 117 − 125. doi: 10.1016/j.molmed.2023.12.002
    [34]
    GHANEKAR S D, MILLER W W, MEYER C J, et al. Orphan drugs in development for the treatment of friedreich's ataxia: focus on omaveloxolone[J] . Degenerative Neurological and Neuromuscular Disease, 2019, 9: 103 − 107. doi: 10.2147/DNND.S180027
    [35]
    LEE A. Omaveloxolone: first approval[J] . Drugs, 2023, 83(8): 725 − 729. doi: 10.1007/s40265-023-01874-9
    [36]
    ZHANG F, WANG S P, ZHANG M J, et al. Pharmacological induction of heme oxygenase-1 by a triterpenoid protects neurons against ischemic injury[J] . Stroke, 2012, 43(5): 1390 − 1397. doi: 10.1161/STROKEAHA.111.647420
    [37]
    LU Y, SUN Y Z, LIU Z H, et al. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease[J] . Science Translational Medicine, 2020, 12(554): eaba3613. doi: 10.1126/scitranslmed.aba3613
    [38]
    LIBY K, HOCK T, YORE M M, et al. The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling[J] . Cancer Research, 2005, 65(11): 4789 − 4798. doi: 10.1158/0008-5472.CAN-04-4539
    [39]
    SHELTON L M, PARK B K, COPPLE I M. Role of Nrf2 in protection against acute kidney injury[J] . Kidney International, 2013, 84(6): 1090 − 1095. doi: 10.1038/ki.2013.248
    [40]
    JIANG T, HUANG Z P, LIN Y F, et al. The protective role of Nrf2 in streptozotocin-induced diabetic nephropathy[J] . Diabetes, 2010, 59(4): 850 − 860. doi: 10.2337/db09-1342
    [41]
    LIU M C, REDDY N M, HIGBEE E M, et al. The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice[J] . Kidney International, 2014, 85(1): 134 − 141. doi: 10.1038/ki.2013.357
    [42]
    CHIN M P, BAKRIS G L, BLOCK G A, et al. Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study[J] . American Journal of Nephrology, 2018, 47(1): 40 − 47. doi: 10.1159/000486398
    [43]
    ROTHAN H A, ZHONG Y W, SANBORN M A, et al. Small molecule grp94 inhibitors block dengue and Zika virus replication[J] . Antiviral Research, 2019, 171: 104590. doi: 10.1016/j.antiviral.2019.104590
    [44]
    VÁZQUEZ N, GREENWELL-WILD T, MARINOS N J, et al. Human immunodeficiency virus type 1-induced macrophage gene expression includes the p21 gene, a target for viral regulation[J] . Journal of Virology, 2005, 79(7): 4479 − 4491. doi: 10.1128/JVI.79.7.4479-4491.2005
    [45]
    SUN Q, YE F, LIANG H, et al. Bardoxolone and bardoxolone methyl, two Nrf2 activators in clinical trials, inhibit SARS-CoV-2 replication and its 3C-like protease[J] . Signal Transduction and Targeted Therapy, 2021, 6(1): 212. doi: 10.1038/s41392-021-00628-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (21) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return