Volume 39 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
SIMA Jinfu, LAI Leijie. Hysteresis compensation and positive velocity-position feedback resonance control of piezoelectric driven nanopositioning stage[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 428-434. doi: 10.12299/jsues.24-0201
Citation: SIMA Jinfu, LAI Leijie. Hysteresis compensation and positive velocity-position feedback resonance control of piezoelectric driven nanopositioning stage[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 428-434. doi: 10.12299/jsues.24-0201

Hysteresis compensation and positive velocity-position feedback resonance control of piezoelectric driven nanopositioning stage

doi: 10.12299/jsues.24-0201
  • Received Date: 2024-07-12
    Available Online: 2026-02-02
  • Publish Date: 2025-12-01
  • To address the hysteresis and low damping resonance problems of piezoelectric driven nanopositioning stages, a three-degree-of-freedom piezoelectric driven nanopositioning stage experimental system was constructed, and the hysteresis and resonance characteristics were analyzed. A rate-dependent Prandtl-Ishlinskii hysteresis model was established, and the parameters of its inverse model were identified. The effectiveness and accuracy of the model were verified through open-loop and close-loop feedforward compensation experiments. Subsequently, a pole placement method based on a Butterworth filter was employed to design the parameters of an integral tracking controller and a positive velocity-position feedback (PVPF) damping controller, and the effectiveness of the damping controller was verified. Finally, trajectory tracking experiments were conducted using a composite control method. The experimental results show that this method significantly improves the tracking accuracy and speed of the piezoelectric positioning stage, demonstrating the effectiveness of the proposed control method.
  • loading
  • [1]
    范伟, 余晓芬, 奚琳. 压电陶瓷驱动系统及控制方法研究[J] . 光学精密工程, 2007, 15(3): 368 − 371.
    [2]
    LI L L, LI C X, GU G Y, et al. Positive acceleration, velocity and position feedback based damping control approach for piezo-actuated nanopositioning stages[J] . Mechatronics, 2017, 47: 97 − 104. doi: 10.1016/j.mechatronics.2017.09.003
    [3]
    LING J, FENG Z, MING M, et al. Damping controller design for nanopositioners: a hybrid reference model matching and virtual reference feedback tuning approach[J] . International Journal of Precision Engineering and Manufacturing, 2018, 19(1): 13 − 22. doi: 10.1007/s12541-018-0002-6
    [4]
    DAI Y L, LI D Q, WANG D. Review on the nonlinear modeling of hysteresis in piezoelectric ceramic actuators[J] . Actuators, 2023, 12(12): 442. doi: 10.3390/act12120442
    [5]
    GAN J Q, MEI Z, CHEN X L, et al. A modified Duhem model for rate-dependent hysteresis behaviors[J] . Micromachines, 2019, 10(10): 680. doi: 10.3390/mi10100680
    [6]
    顾胜良, 王建平, 胡红专, 等. 基于Preisach模型的光纤定位单元R机构精定位的实现[J] . 光学精密工程, 2022, 30(18): 2205 − 2218.
    [7]
    SU X H, LIU Z, ZHANG Y, et al. Event-triggered adaptive fuzzy tracking control for uncertain nonlinear systems preceded by unknown Prandtl–Ishlinskii hysteresis[J] . IEEE Transactions on Cybernetics, 2021, 51(6): 2979 − 2992. doi: 10.1109/TCYB.2019.2949022
    [8]
    王贞艳, 贾高欣. 压电陶瓷作动器非对称迟滞建模与内模控制[J] . 光学精密工程, 2018, 26(10): 2484 − 2492.
    [9]
    张东岳, 王伟国, 张振东, 等. 压电偏摆台的复合控制[J] . 压电与声光, 2017, 39(1): 40 − 43.
    [10]
    APHALE S S, FLEMING A J, MOHEIMANI S O R. Integral resonant control of collocated smart structures[J] . Smart Materials and Structures, 2007, 16(2): 439 − 446. doi: 10.1088/0964-1726/16/2/023
    [11]
    LING J, FENG Z, KANG X, et al. Bandwidth enhancement in damping control for piezoelectric nanopositioning stages with load uncertainty: design and implementation[J] . Journal of Vibration and Control, 2021, 27(11/12): 1382 − 1394.
    [12]
    SAN-MILLAN A, RUSSELL D, FELIU V, et al. A modified positive velocity and position feedback scheme with delay compensation for improved nanopositioning performance[J] . Smart Materials and Structures, 2015, 24(7): 075021. doi: 10.1088/0964-1726/24/7/075021
    [13]
    EIELSEN A A, VAGIA M, GRAVDAHL J T, et al. Damping and tracking control schemes for nanopositioning[J] . IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 432 − 444. doi: 10.1109/TMECH.2013.2242482
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (13) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return