Volume 39 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
QIU Lipei, WANG Sha, HU Bin, YAN Jinbiao, SHEN Jun. Thermodynamic analysis of product distribution and conversion rate of CH4/CO2 reforming products[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 477-484. doi: 10.12299/jsues.24-0202
Citation: QIU Lipei, WANG Sha, HU Bin, YAN Jinbiao, SHEN Jun. Thermodynamic analysis of product distribution and conversion rate of CH4/CO2 reforming products[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 477-484. doi: 10.12299/jsues.24-0202

Thermodynamic analysis of product distribution and conversion rate of CH4/CO2 reforming products

doi: 10.12299/jsues.24-0202
  • Received Date: 2024-07-15
    Available Online: 2026-02-02
  • Publish Date: 2025-12-01
  • Based on the principle of Gibbs free energy minimization using HSC chemistry software, thermodynamic analysis of the CH4/CO2 reforming reaction process was performed. The effects of key parameters such as reaction temperature, pressure, feed ratio (n(CH4)/n(CO2) molar ratio), the inlet amounts of O2 and H2O, on the the equilibrium product distribution and reactant conversion were systematically explored. The results indicate that the conditions of 1137 K, 101.325 kPa, n(CH4)/n(CO2) = 1.20, n(O2)/n(CH4) = 0.10, and n(H2O)/n(CH4) = 0.07 are most favorable for CH4/CO2 conversion and H2/CO generation. As an upstream reaction in numerous chemical synthesis chains, CH4/CO2 reforming effectively utilizes the two major greenhouse gases CH4 and CO2 to produce syngas (H2/CO), an important chemical raw materia. These findings benefits the development of related industries and provide a useful reference for global climate sustainability.
  • loading
  • [1]
    LE PHUONG D H, ALSAIARI M, PHAM C Q, et al. Carbon dioxide reforming of methane over modified iron-cobalt alumina catalyst: role of promoter[J] . Journal of the Taiwan Institute of Chemical Engineers, 2024, 155: 105253. doi: 10.1016/j.jtice.2023.105253
    [2]
    ZHANG M, ZHANG J F, ZHOU Z L, et al. Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst[J] . Applied Catalysis B: Environmental, 2020, 264: 118522.
    [3]
    JOO S, KIM K, KWON O, et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane[J] . Angewandte Chemie International Edition, 2021, 60(29): 15912 − 15919.
    [4]
    CHAWL S K, GEORGE M, PATEL F, et al. Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts[J] . Procedia Engineering, 2013, 51: 461 − 466. doi: 10.1016/j.proeng.2013.01.065
    [5]
    AZIZ M A A, SETIABUDI H D, TEH L P, et al. A review of heterogeneous catalysts for syngas production via dry reforming[J] . Journal of the Taiwan Institute of Chemical Engineers, 2019, 101: 139 − 158.
    [6]
    张哲. 我国可再生能源法律完善研究[D] . 杨凌: 西北农林科技大学, 2009.
    [7]
    钱慧琳, 冉金玲, 何安帮, 等. 二氧化碳-甲烷干气重整反应及其积炭控制的热力学分析[J] . 低碳化学与化工, 2023, 48(5): 55 − 61.
    [8]
    李建伟, 陈冲, 王丹, 等. 甲烷二氧化碳重整热力学分析[J] . 石油与天然气化工, 2015, 44(3): 60 − 64.
    [9]
    CHEIN R Y, CHEN Y C, YU C T, et al. Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures[J] . Journal of Natural Gas Science and Engineering, 2015, 26: 617 − 629.
    [10]
    CHEN Y, ZHANG Y M, FAN G Z, et al. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity[J] . Joule, 2021, 5(12): 3235 − 3251. doi: 10.1016/j.joule.2021.11.009
    [11]
    FAN L, ZHAO Y L, CHEN L, et al. Selective production of ethylene glycol at high rate via cascade catalysis[J] . Nature Catalysis, 2023, 6(7): 585 − 595. doi: 10.1038/s41929-023-00977-6
    [12]
    TANG X Y, YANG W W, MA X, et al. Synergistic enhancement of reaction and separation for a solar membrane reactor by topology optimization of catalyst bed[J] . Chemical Engineering Journal, 2023, 472: 145123. doi: 10.1016/j.cej.2023.145123
    [13]
    TANG X Y, YANG W W, MA X, et al. An integrated modeling method for membrane reactors and optimization study of operating conditions[J] . Energy, 2023, 268: 126730. doi: 10.1016/j.energy.2023.126730
    [14]
    石天宝, 张秋菊, 纪容昕, 等. CH4和CO2转化催化剂的研究[J] . 化工生产与技术, 2000, 7(2): 12 − 15.
    [15]
    傅献彩, 沈文霞, 姚天扬, 等. 物理化学[M] . 5版. 北京: 高等教育出版社, 2005.
    [16]
    张迪茜. 生物质能源研究进展及应用前景[D] . 北京: 北京理工大学, 2015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (12) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return