| Citation: | QIU Lipei, WANG Sha, HU Bin, YAN Jinbiao, SHEN Jun. Thermodynamic analysis of product distribution and conversion rate of CH4/CO2 reforming products[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 477-484. doi: 10.12299/jsues.24-0202 |
| [1] |
LE PHUONG D H, ALSAIARI M, PHAM C Q, et al. Carbon dioxide reforming of methane over modified iron-cobalt alumina catalyst: role of promoter[J] . Journal of the Taiwan Institute of Chemical Engineers, 2024, 155: 105253. doi: 10.1016/j.jtice.2023.105253
|
| [2] |
ZHANG M, ZHANG J F, ZHOU Z L, et al. Effects of the surface adsorbed oxygen species tuned by rare-earth metal doping on dry reforming of methane over Ni/ZrO2 catalyst[J] . Applied Catalysis B: Environmental, 2020, 264: 118522.
|
| [3] |
JOO S, KIM K, KWON O, et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane[J] . Angewandte Chemie International Edition, 2021, 60(29): 15912 − 15919.
|
| [4] |
CHAWL S K, GEORGE M, PATEL F, et al. Production of synthesis gas by carbon dioxide reforming of methane over nickel based and perovskite catalysts[J] . Procedia Engineering, 2013, 51: 461 − 466. doi: 10.1016/j.proeng.2013.01.065
|
| [5] |
AZIZ M A A, SETIABUDI H D, TEH L P, et al. A review of heterogeneous catalysts for syngas production via dry reforming[J] . Journal of the Taiwan Institute of Chemical Engineers, 2019, 101: 139 − 158.
|
| [6] |
张哲. 我国可再生能源法律完善研究[D] . 杨凌: 西北农林科技大学, 2009.
|
| [7] |
钱慧琳, 冉金玲, 何安帮, 等. 二氧化碳-甲烷干气重整反应及其积炭控制的热力学分析[J] . 低碳化学与化工, 2023, 48(5): 55 − 61.
|
| [8] |
李建伟, 陈冲, 王丹, 等. 甲烷二氧化碳重整热力学分析[J] . 石油与天然气化工, 2015, 44(3): 60 − 64.
|
| [9] |
CHEIN R Y, CHEN Y C, YU C T, et al. Thermodynamic analysis of dry reforming of CH4 with CO2 at high pressures[J] . Journal of Natural Gas Science and Engineering, 2015, 26: 617 − 629.
|
| [10] |
CHEN Y, ZHANG Y M, FAN G Z, et al. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity[J] . Joule, 2021, 5(12): 3235 − 3251. doi: 10.1016/j.joule.2021.11.009
|
| [11] |
FAN L, ZHAO Y L, CHEN L, et al. Selective production of ethylene glycol at high rate via cascade catalysis[J] . Nature Catalysis, 2023, 6(7): 585 − 595. doi: 10.1038/s41929-023-00977-6
|
| [12] |
TANG X Y, YANG W W, MA X, et al. Synergistic enhancement of reaction and separation for a solar membrane reactor by topology optimization of catalyst bed[J] . Chemical Engineering Journal, 2023, 472: 145123. doi: 10.1016/j.cej.2023.145123
|
| [13] |
TANG X Y, YANG W W, MA X, et al. An integrated modeling method for membrane reactors and optimization study of operating conditions[J] . Energy, 2023, 268: 126730. doi: 10.1016/j.energy.2023.126730
|
| [14] |
石天宝, 张秋菊, 纪容昕, 等. CH4和CO2转化催化剂的研究[J] . 化工生产与技术, 2000, 7(2): 12 − 15.
|
| [15] |
傅献彩, 沈文霞, 姚天扬, 等. 物理化学[M] . 5版. 北京: 高等教育出版社, 2005.
|
| [16] |
张迪茜. 生物质能源研究进展及应用前景[D] . 北京: 北京理工大学, 2015.
|