Volume 39 Issue 4
Dec.  2025
Turn off MathJax
Article Contents
ZHANG Zhengzhe, ZHANG Hengyun, ZHANG Jiansheng, ZHAO Can. Study on thermal characteristics of symmetric serpentine flow channel liquid cooling plate for prismatic battery module[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 471-476. doi: 10.12299/jsues.24-0204
Citation: ZHANG Zhengzhe, ZHANG Hengyun, ZHANG Jiansheng, ZHAO Can. Study on thermal characteristics of symmetric serpentine flow channel liquid cooling plate for prismatic battery module[J]. Journal of Shanghai University of Engineering Science, 2025, 39(4): 471-476. doi: 10.12299/jsues.24-0204

Study on thermal characteristics of symmetric serpentine flow channel liquid cooling plate for prismatic battery module

doi: 10.12299/jsues.24-0204
  • Received Date: 2024-07-16
    Available Online: 2026-02-02
  • Publish Date: 2025-12-01
  • A novel symmetric serpentine channel structure was proposed for battery module thermal management. Numerical simulations were performed to investigate the bottom heat dissipation performance of a 1×6 series-connected prismatic battery module, compared against a straight-channel liquid cooling plate. The effects of the symmetric serpentine flow channel were investigated by adjusting structural parameters such as the number of channels, branch channel width, and secondary flow structure. Results show that increasing the channel numbers can enhance heat dissipation, but significantly increase the pressure drop in the inlet and outlet. Increasing the branch channel width can effectively improve the heat dissipation performance. The shortened secondary flow structure yields superior performance among the tested configurations. Specifically, the design with five channels, 24 mm branch width, and a shortened secondary flow structure reduces the maximum temperature difference and pressure drop by 23.84% and 59.02%, respectively. The proposed design outperforms the straight-channel plate in both temperature uniformity and pressure drop characteristics.
  • loading
  • [1]
    RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part II. Capacity fade analysis[J] . Journal of Power Sources, 2002, 112(2): 614 − 620. doi: 10.1016/S0378-7753(02)00473-1
    [2]
    GOZDUR R, GUZOWSKI B, DIMITROVA Z, et al. An energy balance evaluation in lithium-ion battery module under high temperature operation[J] . Energy Conversion and Management, 2021, 227: 113565. doi: 10.1016/j.enconman.2020.113565
    [3]
    PIAO N, GAO X N, YANG H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J] . eTransportation, 2022, 11: 100145. doi: 10.1016/j.etran.2021.100145
    [4]
    BAO Y H, SHAO S Q. Numerical study on ultrathin wide straight flow channel cold plate for Li-ion battery thermal management[J] . Journal of Energy Storage, 2023, 64: 107263. doi: 10.1016/j.est.2023.107263
    [5]
    JARRETT A, KIM I Y. Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J] . Journal of Power Sources, 2014, 245: 644 − 655. doi: 10.1016/j.jpowsour.2013.06.114
    [6]
    SHENG L, SU L, ZHANG H, et al. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger[J] . International Journal of Heat and Mass Transfer, 2019, 141: 658 − 668. doi: 10.1016/j.ijheatmasstransfer.2019.07.033
    [7]
    陈雅, 范立云, 李晶雪, 等. 二次流蛇形通道锂离子电池散热性能[J] . 储能科学与技术, 2023, 12(6): 1880 − 1889.
    [8]
    LUO W M, LI H N, CHU T Y, et al. A numerical study of battery thermal management system with square spiral ring-shaped liquid cooling plate[J] . Thermal Science and Engineering Progress, 2023, 45: 102120. doi: 10.1016/j.tsep.2023.102120
    [9]
    孔为, 金劲涛, 陆西坡, 等. 对称蛇形流道锂离子电池冷却性能[J] . 储能科学与技术, 2022, 11(7): 2258 − 2265.
    [10]
    XIN Q Q, YANG T Q, ZHANG H Y, et al. Experimental and numerical study of lithium-ion battery thermal management system using composite phase change material and liquid cooling[J] . Journal of Energy Storage, 2023, 71: 108003. doi: 10.1016/j.est.2023.108003
    [11]
    吴青余, 张恒运, 李俊伟. 校准量热法测量锂电池比热容和生热率[J] . 汽车工程, 2020, 42(1): 59 − 65.
    [12]
    徐晓斌, 徐叶飞, 张恒运, 等. 风冷电池模组热性能及成组效率的多目标优化[J] . 储能科学与技术, 2022, 11(2): 553 − 562.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (12) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return