Citation: | TANG Jiayao, YU Su. Heart disease identification based on boosted decision tree[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 465-470. doi: 10.12299/jsues.24-0219 |
[1] |
马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读[J] . 中国全科医学,2023,26(32):3975 − 3994.
|
[2] |
李秀清. 心脑血管疾病的危险因素及预防方法分析[J] . 亚太传统医药,2012,8(1):179 − 181.
|
[3] |
闫一鸣, 欧阳文斌, 张凤文, 等. 中国先天性心脏病介入治疗现状与展望[J] . 中国胸心血管外科临床杂志,2022,29(10):1243 − 1253.
|
[4] |
梅宏, 杜小勇, 金海, 等. 大数据技术前瞻[J] . 大数据,2023,9(1):1 − 20.
|
[5] |
肖博达, 周国富. 人工智能技术发展及应用综述[J] . 福建电脑,2018,34(1):98 − 99
|
[6] |
陈蒙蒙, 方振红, 涂文怡, 等. 基于Logistic回归模型的心脏病预测模型构建及效果分析[J] . 医院管理论坛,2022,39(2):32 − 35.
|
[7] |
王成武, 郭志恒, 晏峻峰. 改进的支持向量机在心脏病预测中的研究[J] . 计算机技术与发展, 2022, 32(3): 175−179.
|
[8] |
谭朋柳, 徐光勇, 张露玉, 等. 基于卷积神经网络和Adaboost的心脏病预测模型[J] . 计算机应用,2023,43(S1):19 − 25.
|
[9] |
赵金超, 李仪, 王冬, 等. 基于优化的随机森林心脏病预测算法[J] . 青岛科技大学学报(自然科学版),2021,42(2):112 − 118.
|
[10] |
刘柃伶, 黄学德. 基于XGBoost和SHAP的心脏病影响因素分析[J] . 信息与电脑(理论版),2024,36(6):68 − 70.
|
[11] |
ALAN S C, WESLEY D, BENJAMIN F, et al. Boosted decision trees in the era of new physics: a smuon analysis case study[J] . Journal of High Energy Physics,2021(2022):1 − 15.
|
[12] |
NIKOLAY K,OLEG S. Method for improving gradient boosting learning efficiency based on modified loss functions[J] . Automation and Remote Control,2022(83):1935 − 1943.
|
[13] |
ANDREAS T. ConfusionVis: comparative evaluation and selection of multi-class classifiers based on confusion matrices[J] . Knowledge-Based Systems,2022(247):3 − 12.
|
[14] |
TAFFAZUL C, BISMITA C. Automated cardiovascular disease prediction models: A comparative analysis[J] . EAI Endorsed Transactions on Pervasive Health and Technology,2023(9):1 − 6.
|
[15] |
RAQUEL S, VERONIKA T, CELIA O, et al. Balancing risk and profit: Predicting the performance of potential new customers in the insurance industry[J] . Journal cf Information Science,2024(15):546.
|
[16] |
ASADA Y. Evaluation of the performance of a machine learning based atrial fibrillation screening algorithm using an oscillometric blood pressure monitor[J] . Scientific Reports,2024(14):1 − 18.
|
[17] |
DU S S, QIU T, LI L Q, et al. Application of multi-gradient boosting tree in drug identification[J] . Computer Science and Exploration,2020(14):260 − 273.
|
[18] |
SHAIMAA M, MOHAMED G, GAMAL F, et al. Cardiovascular disease prediction using modified version of resnet-50 model[C] //Proceedings of the 32nd International Conference on Computer Theory and Applications (ICCTA). Location: IEEE, 2022.
|