Volume 38 Issue 4
Dec.  2024
Turn off MathJax
Article Contents
TANG Jiayao, YU Su. Heart disease identification based on boosted decision tree[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 465-470. doi: 10.12299/jsues.24-0219
Citation: TANG Jiayao, YU Su. Heart disease identification based on boosted decision tree[J]. Journal of Shanghai University of Engineering Science, 2024, 38(4): 465-470. doi: 10.12299/jsues.24-0219

Heart disease identification based on boosted decision tree

doi: 10.12299/jsues.24-0219
  • Received Date: 2024-06-06
  • Publish Date: 2024-12-31
  • A gradient boosting decision tree (BDTG) model based on high-energy physics data analysis in ROOT framework was proposed for the identification of heart disease using a multivariate analysis method. Through a large amount of clinical data, the aim is to analyze the various complex relationships of variables to improve the accuracy and reliability of heart disease differentiation. Using the Kaggle open-source heart disease dataset, the results showed that the model did not exhibit any erroneous discrimination when the BDTG responsevalues range between between −0.4 and 0.5. In addition, when the truncation of BDTG response values is −0.6 or 0.6, the model still maintained above 98% in accuracy, precision, recall and F1 scores. Therefore, the model has high accuracy and reliability in the diagnosis of heart disease. This study not only provides new perspectives and methods for predicting heart disease, but also serves as a reference for machine learning prediction research on other diseases.
  • loading
  • [1]
    马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读[J] . 中国全科医学,2023,26(32):3975 − 3994.
    [2]
    李秀清. 心脑血管疾病的危险因素及预防方法分析[J] . 亚太传统医药,2012,8(1):179 − 181.
    [3]
    闫一鸣, 欧阳文斌, 张凤文, 等. 中国先天性心脏病介入治疗现状与展望[J] . 中国胸心血管外科临床杂志,2022,29(10):1243 − 1253.
    [4]
    梅宏, 杜小勇, 金海, 等. 大数据技术前瞻[J] . 大数据,2023,9(1):1 − 20.
    [5]
    肖博达, 周国富. 人工智能技术发展及应用综述[J] . 福建电脑,2018,34(1):98 − 99
    [6]
    陈蒙蒙, 方振红, 涂文怡, 等. 基于Logistic回归模型的心脏病预测模型构建及效果分析[J] . 医院管理论坛,2022,39(2):32 − 35.
    [7]
    王成武, 郭志恒, 晏峻峰. 改进的支持向量机在心脏病预测中的研究[J] . 计算机技术与发展, 2022, 32(3): 175−179.
    [8]
    谭朋柳, 徐光勇, 张露玉, 等. 基于卷积神经网络和Adaboost的心脏病预测模型[J] . 计算机应用,2023,43(S1):19 − 25.
    [9]
    赵金超, 李仪, 王冬, 等. 基于优化的随机森林心脏病预测算法[J] . 青岛科技大学学报(自然科学版),2021,42(2):112 − 118.
    [10]
    刘柃伶, 黄学德. 基于XGBoost和SHAP的心脏病影响因素分析[J] . 信息与电脑(理论版),2024,36(6):68 − 70.
    [11]
    ALAN S C, WESLEY D, BENJAMIN F, et al. Boosted decision trees in the era of new physics: a smuon analysis case study[J] . Journal of High Energy Physics,2021(2022):1 − 15.
    [12]
    NIKOLAY K,OLEG S. Method for improving gradient boosting learning efficiency based on modified loss functions[J] . Automation and Remote Control,2022(83):1935 − 1943.
    [13]
    ANDREAS T. ConfusionVis: comparative evaluation and selection of multi-class classifiers based on confusion matrices[J] . Knowledge-Based Systems,2022(247):3 − 12.
    [14]
    TAFFAZUL C, BISMITA C. Automated cardiovascular disease prediction models: A comparative analysis[J] . EAI Endorsed Transactions on Pervasive Health and Technology,2023(9):1 − 6.
    [15]
    RAQUEL S, VERONIKA T, CELIA O, et al. Balancing risk and profit: Predicting the performance of potential new customers in the insurance industry[J] . Journal cf Information Science,2024(15):546.
    [16]
    ASADA Y. Evaluation of the performance of a machine learning based atrial fibrillation screening algorithm using an oscillometric blood pressure monitor[J] . Scientific Reports,2024(14):1 − 18.
    [17]
    DU S S, QIU T, LI L Q, et al. Application of multi-gradient boosting tree in drug identification[J] . Computer Science and Exploration,2020(14):260 − 273.
    [18]
    SHAIMAA M, MOHAMED G, GAMAL F, et al. Cardiovascular disease prediction using modified version of resnet-50 model[C] //Proceedings of the 32nd International Conference on Computer Theory and Applications (ICCTA). Location: IEEE, 2022.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (25) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return