Volume 35 Issue 1
Mar.  2021
Turn off MathJax
Article Contents
DENG Qin, DUAN Peng, QIU Wenhui. Forecast of Air Routes Market Share Based on Long Short-Term Memory Network[J]. Journal of Shanghai University of Engineering Science, 2021, 35(1): 61-66, 74.
Citation: DENG Qin, DUAN Peng, QIU Wenhui. Forecast of Air Routes Market Share Based on Long Short-Term Memory Network[J]. Journal of Shanghai University of Engineering Science, 2021, 35(1): 61-66, 74.

Forecast of Air Routes Market Share Based on Long Short-Term Memory Network

  • Received Date: 2020-11-27
  • Publish Date: 2021-03-30
  • The mainstream forecast method of air route market share is quality of service index (QSI) model currently, but this method needs model linearization and a lot of manual experience. An airline market share forecasting model based on long short-term memory network was proposed. The model was used to forecast the flight market share, and the validity of the model was verified by experiments on simplified data sets. Taking root mean square error as the evaluation index, the parameters of the model were optimized, and the prediction accuracy of the three methods, such as capacity prediction, QSI model and the proposed prediction model, was tested respectively. Experimental results show that the proposed model can better predict the market share of airlines, and the root mean square error is about 0.1.
  • loading
  • [1]
    陈蔚蔚, 许俐. 航空公司航线市场份额研究[J] . 中国民航学院学报,2006(2):30 − 33.
    [2]
    HALL M J, RAVINDRANATH R, BERMELL-GARCIA P, et al. Route networks within the air transport system: A comparative study of two European low-cost airlines using network metrics[C]//Proceedings of 2016 Annual IEEE Systems Conference (SysCon). Orlando: IEEE, 2016.
    [3]
    GRAF M, KIMMS A. Transfer price optimization for option-based airline alliance revenue management[J] . International Journal of Production Economics,2013,145(1):281 − 293. doi: 10.1016/j.ijpe.2013.04.049
    [4]
    COLDREN G M, KOPPELMAN F S, KASTURIRANGAN K, et al. Modeling aggregate air-travel itinerary shares: Logit model development at a major US airline[J] . Journal of Air Transport Management,2003,9(6):361 − 369. doi: 10.1016/S0969-6997(03)00042-5
    [5]
    王斌, 张金隆. 航线流量组合预测模型研究[J] . 武汉理工大学学报(信息与管理工程版),2008,30(3):441 − 444.
    [6]
    KLOTH R J, EDSALL T J, FINE M, et al. Method and apparatus for implementing a quality of service policy in a data communications network: US6870812[P]. 2005-03-22.
    [7]
    李纯青, 郝艳磊, 张军. 航空积分联盟及其对联盟合作伙伴的影响研究: 基于南航加入天合联盟的案例研究[J] . 管理案例研究与评论,2011,4(6):459 − 467. doi: 10.3969/j.issn.1674-1692.2011.06.005
    [8]
    BARNHART C, SMITH B. Quantitative problem solving methods in the airline industry: A modeling methodology handbook[M]. Boston: Springer, 2012.
    [9]
    GROSCHE T, KLOPHAUS R, SEREDYŃSKI A. Market concentration in German air transport before and after the air Berlin bankruptcy[J] . Transport Policy,2020,94:78 − 88. doi: 10.1016/j.tranpol.2020.05.006
    [10]
    赵晓松, 朱金福, 葛伟. 联盟环境下国际航线市场份额预测方法研究[J] . 交通运输系统工程与信息,2018,18(2):33 − 39.
    [11]
    陈娴, 朱金福, 刘月. 基于PSO-BP算法的联盟航线市场份额预测[J] . 华东交通大学学报,2020,37(1):61 − 69.
    [12]
    JÜRGEN S. Deep learning in neural networks: An overview[J] . Neural Networks,2015,61:85 − 117. doi: 10.1016/j.neunet.2014.09.003
    [13]
    GRAVES A, MOHAMED A AND HINTON G. Speech recognition with deep recurrent neural networks[C]//Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013.
    [14]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J] . Neural Computation,1997,9(8):1735 − 1780. doi: 10.1162/neco.1997.9.8.1735
    [15]
    CHEN W H, ZHAO Z, LIU J M, et al. LSTM network: A deep learning approach for short-term traffic forecast[J] . IET Intelligent Transport Systems,2017,11(2):68 − 75. doi: 10.1049/iet-its.2016.0208
    [16]
    SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J] . IEEE Transactions on Signal Processing,1997,45(11):2673 − 2681. doi: 10.1109/78.650093
    [17]
    陈蔚蔚. 航线网络的经济性研究及其应用[D]. 南京: 南京航空航天大学, 2006.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(6)

    Article Metrics

    Article views (195) PDF downloads(92) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return